This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Negation in a ring is the same as right multiplication by -1. ( rngonegmn1r analog.) (Contributed by Jeff Madsen, 19-Jun-2010) (Revised by Mario Carneiro, 2-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ringnegl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| ringnegl.t | ⊢ · = ( .r ‘ 𝑅 ) | ||
| ringnegl.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | ||
| ringnegl.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | ||
| ringnegl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | ||
| ringnegl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | ||
| Assertion | ringnegr | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 1 ) ) = ( 𝑁 ‘ 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringnegl.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | ringnegl.t | ⊢ · = ( .r ‘ 𝑅 ) | |
| 3 | ringnegl.u | ⊢ 1 = ( 1r ‘ 𝑅 ) | |
| 4 | ringnegl.n | ⊢ 𝑁 = ( invg ‘ 𝑅 ) | |
| 5 | ringnegl.r | ⊢ ( 𝜑 → 𝑅 ∈ Ring ) | |
| 6 | ringnegl.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) | |
| 7 | ringgrp | ⊢ ( 𝑅 ∈ Ring → 𝑅 ∈ Grp ) | |
| 8 | 5 7 | syl | ⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 9 | 1 3 | ringidcl | ⊢ ( 𝑅 ∈ Ring → 1 ∈ 𝐵 ) |
| 10 | 5 9 | syl | ⊢ ( 𝜑 → 1 ∈ 𝐵 ) |
| 11 | 1 4 | grpinvcl | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( 𝑁 ‘ 1 ) ∈ 𝐵 ) |
| 12 | 8 10 11 | syl2anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 1 ) ∈ 𝐵 ) |
| 13 | eqid | ⊢ ( +g ‘ 𝑅 ) = ( +g ‘ 𝑅 ) | |
| 14 | 1 13 2 | ringdi | ⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 1 ) ∈ 𝐵 ∧ 1 ∈ 𝐵 ) ) → ( 𝑋 · ( ( 𝑁 ‘ 1 ) ( +g ‘ 𝑅 ) 1 ) ) = ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 1 ) ) ) |
| 15 | 5 6 12 10 14 | syl13anc | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑁 ‘ 1 ) ( +g ‘ 𝑅 ) 1 ) ) = ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 1 ) ) ) |
| 16 | eqid | ⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) | |
| 17 | 1 13 16 4 | grplinv | ⊢ ( ( 𝑅 ∈ Grp ∧ 1 ∈ 𝐵 ) → ( ( 𝑁 ‘ 1 ) ( +g ‘ 𝑅 ) 1 ) = ( 0g ‘ 𝑅 ) ) |
| 18 | 8 10 17 | syl2anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 1 ) ( +g ‘ 𝑅 ) 1 ) = ( 0g ‘ 𝑅 ) ) |
| 19 | 18 | oveq2d | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑁 ‘ 1 ) ( +g ‘ 𝑅 ) 1 ) ) = ( 𝑋 · ( 0g ‘ 𝑅 ) ) ) |
| 20 | 1 2 16 | ringrz | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 21 | 5 6 20 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 · ( 0g ‘ 𝑅 ) ) = ( 0g ‘ 𝑅 ) ) |
| 22 | 19 21 | eqtrd | ⊢ ( 𝜑 → ( 𝑋 · ( ( 𝑁 ‘ 1 ) ( +g ‘ 𝑅 ) 1 ) ) = ( 0g ‘ 𝑅 ) ) |
| 23 | 1 2 3 | ringridm | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 · 1 ) = 𝑋 ) |
| 24 | 5 6 23 | syl2anc | ⊢ ( 𝜑 → ( 𝑋 · 1 ) = 𝑋 ) |
| 25 | 24 | oveq2d | ⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) ( 𝑋 · 1 ) ) = ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) 𝑋 ) ) |
| 26 | 15 22 25 | 3eqtr3rd | ⊢ ( 𝜑 → ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) |
| 27 | 1 2 | ringcl | ⊢ ( ( 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑁 ‘ 1 ) ∈ 𝐵 ) → ( 𝑋 · ( 𝑁 ‘ 1 ) ) ∈ 𝐵 ) |
| 28 | 5 6 12 27 | syl3anc | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 1 ) ) ∈ 𝐵 ) |
| 29 | 1 13 16 4 | grpinvid2 | ⊢ ( ( 𝑅 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝑋 · ( 𝑁 ‘ 1 ) ) ∈ 𝐵 ) → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑋 · ( 𝑁 ‘ 1 ) ) ↔ ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
| 30 | 8 6 28 29 | syl3anc | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝑋 ) = ( 𝑋 · ( 𝑁 ‘ 1 ) ) ↔ ( ( 𝑋 · ( 𝑁 ‘ 1 ) ) ( +g ‘ 𝑅 ) 𝑋 ) = ( 0g ‘ 𝑅 ) ) ) |
| 31 | 26 30 | mpbird | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝑋 ) = ( 𝑋 · ( 𝑁 ‘ 1 ) ) ) |
| 32 | 31 | eqcomd | ⊢ ( 𝜑 → ( 𝑋 · ( 𝑁 ‘ 1 ) ) = ( 𝑁 ‘ 𝑋 ) ) |