This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Scalar multiplication distributive law for subtraction. (Contributed by NM, 19-May-2005) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hvsubdistr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 2 | hvmulcl | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 3 | 1 2 | mpan | ⊢ ( 𝐶 ∈ ℋ → ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) |
| 4 | ax-hvdistr1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ ( - 1 ·ℎ 𝐶 ) ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) | |
| 5 | 3 4 | syl3an3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 6 | hvmulcom | ⊢ ( ( 𝐴 ∈ ℂ ∧ - 1 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) = ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) | |
| 7 | 1 6 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) = ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |
| 8 | 7 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 9 | 8 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( 𝐴 ·ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 10 | 5 9 | eqtrd | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 11 | hvsubval | ⊢ ( ( 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) | |
| 12 | 11 | 3adant1 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐵 −ℎ 𝐶 ) = ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) |
| 13 | 12 | oveq2d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( 𝐴 ·ℎ ( 𝐵 +ℎ ( - 1 ·ℎ 𝐶 ) ) ) ) |
| 14 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) | |
| 15 | 14 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ) |
| 16 | hvmulcl | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) | |
| 17 | 16 | 3adant2 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) |
| 18 | hvsubval | ⊢ ( ( ( 𝐴 ·ℎ 𝐵 ) ∈ ℋ ∧ ( 𝐴 ·ℎ 𝐶 ) ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) | |
| 19 | 15 17 18 | syl2anc | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) +ℎ ( - 1 ·ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) ) |
| 20 | 10 13 19 | 3eqtr4d | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ ) → ( 𝐴 ·ℎ ( 𝐵 −ℎ 𝐶 ) ) = ( ( 𝐴 ·ℎ 𝐵 ) −ℎ ( 𝐴 ·ℎ 𝐶 ) ) ) |