This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmhmplusg.p | ⊢ + = ( +g ‘ 𝑁 ) | |
| Assertion | lmhmplusg | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 LMHom 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmplusg.p | ⊢ + = ( +g ‘ 𝑁 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 4 | eqid | ⊢ ( ·𝑠 ‘ 𝑁 ) = ( ·𝑠 ‘ 𝑁 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑁 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) | |
| 8 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑀 ∈ LMod ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑀 ∈ LMod ) |
| 10 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑁 ∈ LMod ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑁 ∈ LMod ) |
| 12 | 5 6 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑀 ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( Scalar ‘ 𝑁 ) = ( Scalar ‘ 𝑀 ) ) |
| 14 | lmodabl | ⊢ ( 𝑁 ∈ LMod → 𝑁 ∈ Abel ) | |
| 15 | 11 14 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑁 ∈ Abel ) |
| 16 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 17 | 16 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 18 | lmghm | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 19 | 18 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 20 | 1 | ghmplusg | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 21 | 15 17 19 20 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 22 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) | |
| 23 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) | |
| 24 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) | |
| 25 | 5 7 2 3 4 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) ) |
| 27 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) | |
| 28 | 5 7 2 3 4 | lmhmlin | ⊢ ( ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 29 | 27 23 24 28 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) |
| 30 | 26 29 | oveq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) + ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 31 | 10 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑁 ∈ LMod ) |
| 32 | 12 | fveq2d | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 33 | 32 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 34 | 23 33 | eleqtrrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑁 ) ) ) |
| 35 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 36 | 2 35 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 37 | 36 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 38 | 37 24 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 39 | 2 35 | lmhmf | ⊢ ( 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 40 | 39 | ad2antlr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 41 | 40 24 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 42 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑁 ) ) = ( Base ‘ ( Scalar ‘ 𝑁 ) ) | |
| 43 | 35 1 6 4 42 | lmodvsdi | ⊢ ( ( 𝑁 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑁 ) ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) + ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 44 | 31 34 38 41 43 | syl13anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) = ( ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐹 ‘ 𝑦 ) ) + ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 45 | 30 44 | eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 46 | 37 | ffnd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 47 | 40 | ffnd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 Fn ( Base ‘ 𝑀 ) ) |
| 48 | fvexd | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) | |
| 49 | 8 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑀 ∈ LMod ) |
| 50 | 2 5 3 7 | lmodvscl | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 51 | 49 23 24 50 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 52 | fnfvof | ⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) | |
| 53 | 46 47 48 51 52 | syl22anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) ) ) |
| 54 | fnfvof | ⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) | |
| 55 | 46 47 48 24 54 | syl22anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 56 | 55 | oveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 57 | 45 53 56 | 3eqtr4d | ⊢ ( ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑁 ) ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) ) |
| 58 | 2 3 4 5 6 7 9 11 13 21 57 | islmhmd | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 LMHom 𝑁 ) ) |