This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ghmplusg.p | ⊢ + = ( +g ‘ 𝑁 ) | |
| Assertion | ghmplusg | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmplusg.p | ⊢ + = ( +g ‘ 𝑁 ) | |
| 2 | eqid | ⊢ ( Base ‘ 𝑀 ) = ( Base ‘ 𝑀 ) | |
| 3 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 5 | ghmgrp1 | ⊢ ( 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) → 𝑀 ∈ Grp ) | |
| 6 | 5 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → 𝑀 ∈ Grp ) |
| 7 | ghmgrp2 | ⊢ ( 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) → 𝑁 ∈ Grp ) | |
| 8 | 7 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → 𝑁 ∈ Grp ) |
| 9 | 3 1 | grpcl | ⊢ ( ( 𝑁 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 10 | 9 | 3expb | ⊢ ( ( 𝑁 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 11 | 8 10 | sylan | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑁 ) ∧ 𝑦 ∈ ( Base ‘ 𝑁 ) ) ) → ( 𝑥 + 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 12 | 2 3 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 13 | 12 | 3ad2ant2 | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → 𝐹 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 14 | 2 3 | ghmf | ⊢ ( 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 15 | 14 | 3ad2ant3 | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → 𝐺 : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 16 | fvexd | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( Base ‘ 𝑀 ) ∈ V ) | |
| 17 | inidm | ⊢ ( ( Base ‘ 𝑀 ) ∩ ( Base ‘ 𝑀 ) ) = ( Base ‘ 𝑀 ) | |
| 18 | 11 13 15 16 16 17 | off | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) : ( Base ‘ 𝑀 ) ⟶ ( Base ‘ 𝑁 ) ) |
| 19 | 2 4 1 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 20 | 19 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 21 | 20 | 3ad2antl2 | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) ) |
| 22 | 2 4 1 | ghmlin | ⊢ ( ( 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 23 | 22 | 3expb | ⊢ ( ( 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 24 | 23 | 3ad2antl3 | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐺 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 25 | 21 24 | oveq12d | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) + ( ( 𝐺 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 26 | simpl1 | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑁 ∈ Abel ) | |
| 27 | ablcmn | ⊢ ( 𝑁 ∈ Abel → 𝑁 ∈ CMnd ) | |
| 28 | 26 27 | syl | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑁 ∈ CMnd ) |
| 29 | 13 | ffvelcdmda | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) |
| 30 | 29 | adantrr | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) |
| 31 | 13 | ffvelcdmda | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 32 | 31 | adantrl | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 33 | 15 | ffvelcdmda | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) |
| 34 | 33 | adantrr | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑁 ) ) |
| 35 | 15 | ffvelcdmda | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 36 | 35 | adantrl | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 37 | 3 1 | cmn4 | ⊢ ( ( 𝑁 ∈ CMnd ∧ ( ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑁 ) ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ∧ ( ( 𝐺 ‘ 𝑥 ) ∈ ( Base ‘ 𝑁 ) ∧ ( 𝐺 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) + ( ( 𝐺 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑦 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) + ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 38 | 28 30 32 34 36 37 | syl122anc | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐹 ‘ 𝑦 ) ) + ( ( 𝐺 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑦 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) + ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 39 | 25 38 | eqtrd | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) = ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) + ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 40 | 13 | ffnd | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 41 | 40 | adantr | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐹 Fn ( Base ‘ 𝑀 ) ) |
| 42 | 15 | ffnd | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → 𝐺 Fn ( Base ‘ 𝑀 ) ) |
| 43 | 42 | adantr | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝐺 Fn ( Base ‘ 𝑀 ) ) |
| 44 | fvexd | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( Base ‘ 𝑀 ) ∈ V ) | |
| 45 | 2 4 | grpcl | ⊢ ( ( 𝑀 ∈ Grp ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 46 | 45 | 3expb | ⊢ ( ( 𝑀 ∈ Grp ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 47 | 6 46 | sylan | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) |
| 48 | fnfvof | ⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) ) | |
| 49 | 41 43 44 47 48 | syl22anc | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) + ( 𝐺 ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) ) ) |
| 50 | simprl | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑥 ∈ ( Base ‘ 𝑀 ) ) | |
| 51 | fnfvof | ⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ 𝑥 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) | |
| 52 | 41 43 44 50 51 | syl22anc | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) = ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) ) |
| 53 | simprr | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → 𝑦 ∈ ( Base ‘ 𝑀 ) ) | |
| 54 | fnfvof | ⊢ ( ( ( 𝐹 Fn ( Base ‘ 𝑀 ) ∧ 𝐺 Fn ( Base ‘ 𝑀 ) ) ∧ ( ( Base ‘ 𝑀 ) ∈ V ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) | |
| 55 | 41 43 44 53 54 | syl22anc | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) = ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) |
| 56 | 52 55 | oveq12d | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) + ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) = ( ( ( 𝐹 ‘ 𝑥 ) + ( 𝐺 ‘ 𝑥 ) ) + ( ( 𝐹 ‘ 𝑦 ) + ( 𝐺 ‘ 𝑦 ) ) ) ) |
| 57 | 39 49 56 | 3eqtr4d | ⊢ ( ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ 𝑀 ) ∧ 𝑦 ∈ ( Base ‘ 𝑀 ) ) ) → ( ( 𝐹 ∘f + 𝐺 ) ‘ ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ) = ( ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑥 ) + ( ( 𝐹 ∘f + 𝐺 ) ‘ 𝑦 ) ) ) |
| 58 | 2 3 4 1 6 8 18 57 | isghmd | ⊢ ( ( 𝑁 ∈ Abel ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ∧ 𝐺 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( 𝐹 ∘f + 𝐺 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |