This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise scalar product of a linear function and a constant is linear, over a commutative ring. (Contributed by Mario Carneiro, 22-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmvsca.v | ⊢ 𝑉 = ( Base ‘ 𝑀 ) | |
| lmhmvsca.s | ⊢ · = ( ·𝑠 ‘ 𝑁 ) | ||
| lmhmvsca.j | ⊢ 𝐽 = ( Scalar ‘ 𝑁 ) | ||
| lmhmvsca.k | ⊢ 𝐾 = ( Base ‘ 𝐽 ) | ||
| Assertion | lmhmvsca | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ∈ ( 𝑀 LMHom 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmvsca.v | ⊢ 𝑉 = ( Base ‘ 𝑀 ) | |
| 2 | lmhmvsca.s | ⊢ · = ( ·𝑠 ‘ 𝑁 ) | |
| 3 | lmhmvsca.j | ⊢ 𝐽 = ( Scalar ‘ 𝑁 ) | |
| 4 | lmhmvsca.k | ⊢ 𝐾 = ( Base ‘ 𝐽 ) | |
| 5 | eqid | ⊢ ( ·𝑠 ‘ 𝑀 ) = ( ·𝑠 ‘ 𝑀 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑀 ) = ( Scalar ‘ 𝑀 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑀 ) ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) | |
| 8 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑀 ∈ LMod ) | |
| 9 | 8 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑀 ∈ LMod ) |
| 10 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝑁 ∈ LMod ) | |
| 11 | 10 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑁 ∈ LMod ) |
| 12 | 6 3 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐽 = ( Scalar ‘ 𝑀 ) ) |
| 13 | 12 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐽 = ( Scalar ‘ 𝑀 ) ) |
| 14 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 15 | 14 | a1i | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝑉 ∈ V ) |
| 16 | simpl2 | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ 𝑣 ∈ 𝑉 ) → 𝐴 ∈ 𝐾 ) | |
| 17 | eqid | ⊢ ( Base ‘ 𝑁 ) = ( Base ‘ 𝑁 ) | |
| 18 | 1 17 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑁 ) ) |
| 19 | 18 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑁 ) ) |
| 20 | 19 | ffvelcdmda | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ 𝑣 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑣 ) ∈ ( Base ‘ 𝑁 ) ) |
| 21 | fconstmpt | ⊢ ( 𝑉 × { 𝐴 } ) = ( 𝑣 ∈ 𝑉 ↦ 𝐴 ) | |
| 22 | 21 | a1i | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝑉 × { 𝐴 } ) = ( 𝑣 ∈ 𝑉 ↦ 𝐴 ) ) |
| 23 | 19 | feqmptd | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 = ( 𝑣 ∈ 𝑉 ↦ ( 𝐹 ‘ 𝑣 ) ) ) |
| 24 | 15 16 20 22 23 | offval2 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) = ( 𝑣 ∈ 𝑉 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 25 | eqidd | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) = ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ) | |
| 26 | oveq2 | ⊢ ( 𝑢 = ( 𝐹 ‘ 𝑣 ) → ( 𝐴 · 𝑢 ) = ( 𝐴 · ( 𝐹 ‘ 𝑣 ) ) ) | |
| 27 | 20 23 25 26 | fmptco | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) = ( 𝑣 ∈ 𝑉 ↦ ( 𝐴 · ( 𝐹 ‘ 𝑣 ) ) ) ) |
| 28 | 24 27 | eqtr4d | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) = ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) ) |
| 29 | simp2 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐴 ∈ 𝐾 ) | |
| 30 | 17 3 2 4 | lmodvsghm | ⊢ ( ( 𝑁 ∈ LMod ∧ 𝐴 ∈ 𝐾 ) → ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∈ ( 𝑁 GrpHom 𝑁 ) ) |
| 31 | 11 29 30 | syl2anc | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∈ ( 𝑁 GrpHom 𝑁 ) ) |
| 32 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 33 | 32 | 3ad2ant3 | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 34 | ghmco | ⊢ ( ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∈ ( 𝑁 GrpHom 𝑁 ) ∧ 𝐹 ∈ ( 𝑀 GrpHom 𝑁 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) | |
| 35 | 31 33 34 | syl2anc | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑢 ∈ ( Base ‘ 𝑁 ) ↦ ( 𝐴 · 𝑢 ) ) ∘ 𝐹 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 36 | 28 35 | eqeltrd | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ∈ ( 𝑀 GrpHom 𝑁 ) ) |
| 37 | simpl1 | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐽 ∈ CRing ) | |
| 38 | simpl2 | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐴 ∈ 𝐾 ) | |
| 39 | simprl | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) | |
| 40 | 13 | fveq2d | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( Base ‘ 𝐽 ) = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 41 | 4 40 | eqtrid | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐾 = ( Base ‘ ( Scalar ‘ 𝑀 ) ) ) |
| 43 | 39 42 | eleqtrrd | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑥 ∈ 𝐾 ) |
| 44 | eqid | ⊢ ( .r ‘ 𝐽 ) = ( .r ‘ 𝐽 ) | |
| 45 | 4 44 | crngcom | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾 ) → ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) ) |
| 46 | 37 38 43 45 | syl3anc | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) ) |
| 47 | 46 | oveq1d | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) · ( 𝐹 ‘ 𝑦 ) ) ) |
| 48 | 11 | adantr | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑁 ∈ LMod ) |
| 49 | 19 | adantr | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑁 ) ) |
| 50 | simprr | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑦 ∈ 𝑉 ) | |
| 51 | 49 50 | ffvelcdmd | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) |
| 52 | 17 3 2 4 44 | lmodvsass | ⊢ ( ( 𝑁 ∈ LMod ∧ ( 𝐴 ∈ 𝐾 ∧ 𝑥 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 53 | 48 38 43 51 52 | syl13anc | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝐴 ( .r ‘ 𝐽 ) 𝑥 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 54 | 17 3 2 4 44 | lmodvsass | ⊢ ( ( 𝑁 ∈ LMod ∧ ( 𝑥 ∈ 𝐾 ∧ 𝐴 ∈ 𝐾 ∧ ( 𝐹 ‘ 𝑦 ) ∈ ( Base ‘ 𝑁 ) ) ) → ( ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 55 | 48 43 38 51 54 | syl13anc | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( 𝑥 ( .r ‘ 𝐽 ) 𝐴 ) · ( 𝐹 ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 56 | 47 53 55 | 3eqtr3d | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 57 | 1 6 5 7 | lmodvscl | ⊢ ( ( 𝑀 ∈ LMod ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) |
| 58 | 57 | 3expb | ⊢ ( ( 𝑀 ∈ LMod ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) |
| 59 | 9 58 | sylan | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) |
| 60 | 14 | a1i | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝑉 ∈ V ) |
| 61 | 19 | ffnd | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → 𝐹 Fn 𝑉 ) |
| 62 | 61 | adantr | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → 𝐹 Fn 𝑉 ) |
| 63 | 6 7 1 5 2 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 64 | 63 | 3expb | ⊢ ( ( 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 65 | 64 | 3ad2antl3 | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) → ( 𝐹 ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 67 | 60 38 62 66 | ofc1 | ⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ∈ 𝑉 ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 68 | 59 67 | mpdan | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝐴 · ( 𝑥 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 69 | eqidd | ⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 70 | 60 38 62 69 | ofc1 | ⊢ ( ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) ∧ 𝑦 ∈ 𝑉 ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 71 | 50 70 | mpdan | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) = ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) |
| 72 | 71 | oveq2d | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( 𝑥 · ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) ) = ( 𝑥 · ( 𝐴 · ( 𝐹 ‘ 𝑦 ) ) ) ) |
| 73 | 56 68 72 | 3eqtr4d | ⊢ ( ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑀 ) ) ∧ 𝑦 ∈ 𝑉 ) ) → ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ ( 𝑥 ( ·𝑠 ‘ 𝑀 ) 𝑦 ) ) = ( 𝑥 · ( ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ‘ 𝑦 ) ) ) |
| 74 | 1 5 2 6 3 7 9 11 13 36 73 | islmhmd | ⊢ ( ( 𝐽 ∈ CRing ∧ 𝐴 ∈ 𝐾 ∧ 𝐹 ∈ ( 𝑀 LMHom 𝑁 ) ) → ( ( 𝑉 × { 𝐴 } ) ∘f · 𝐹 ) ∈ ( 𝑀 LMHom 𝑁 ) ) |