This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The pointwise sum of two linear functions is linear. (Contributed by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmhmplusg.p | |- .+ = ( +g ` N ) |
|
| Assertion | lmhmplusg | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( F oF .+ G ) e. ( M LMHom N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmplusg.p | |- .+ = ( +g ` N ) |
|
| 2 | eqid | |- ( Base ` M ) = ( Base ` M ) |
|
| 3 | eqid | |- ( .s ` M ) = ( .s ` M ) |
|
| 4 | eqid | |- ( .s ` N ) = ( .s ` N ) |
|
| 5 | eqid | |- ( Scalar ` M ) = ( Scalar ` M ) |
|
| 6 | eqid | |- ( Scalar ` N ) = ( Scalar ` N ) |
|
| 7 | eqid | |- ( Base ` ( Scalar ` M ) ) = ( Base ` ( Scalar ` M ) ) |
|
| 8 | lmhmlmod1 | |- ( F e. ( M LMHom N ) -> M e. LMod ) |
|
| 9 | 8 | adantr | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> M e. LMod ) |
| 10 | lmhmlmod2 | |- ( F e. ( M LMHom N ) -> N e. LMod ) |
|
| 11 | 10 | adantr | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> N e. LMod ) |
| 12 | 5 6 | lmhmsca | |- ( F e. ( M LMHom N ) -> ( Scalar ` N ) = ( Scalar ` M ) ) |
| 13 | 12 | adantr | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( Scalar ` N ) = ( Scalar ` M ) ) |
| 14 | lmodabl | |- ( N e. LMod -> N e. Abel ) |
|
| 15 | 11 14 | syl | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> N e. Abel ) |
| 16 | lmghm | |- ( F e. ( M LMHom N ) -> F e. ( M GrpHom N ) ) |
|
| 17 | 16 | adantr | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> F e. ( M GrpHom N ) ) |
| 18 | lmghm | |- ( G e. ( M LMHom N ) -> G e. ( M GrpHom N ) ) |
|
| 19 | 18 | adantl | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> G e. ( M GrpHom N ) ) |
| 20 | 1 | ghmplusg | |- ( ( N e. Abel /\ F e. ( M GrpHom N ) /\ G e. ( M GrpHom N ) ) -> ( F oF .+ G ) e. ( M GrpHom N ) ) |
| 21 | 15 17 19 20 | syl3anc | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( F oF .+ G ) e. ( M GrpHom N ) ) |
| 22 | simpll | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F e. ( M LMHom N ) ) |
|
| 23 | simprl | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` ( Scalar ` M ) ) ) |
|
| 24 | simprr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> y e. ( Base ` M ) ) |
|
| 25 | 5 7 2 3 4 | lmhmlin | |- ( ( F e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( F ` y ) ) ) |
| 26 | 22 23 24 25 | syl3anc | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( F ` y ) ) ) |
| 27 | simplr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G e. ( M LMHom N ) ) |
|
| 28 | 5 7 2 3 4 | lmhmlin | |- ( ( G e. ( M LMHom N ) /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( G ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( G ` y ) ) ) |
| 29 | 27 23 24 28 | syl3anc | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( G ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( G ` y ) ) ) |
| 30 | 26 29 | oveq12d | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) = ( ( x ( .s ` N ) ( F ` y ) ) .+ ( x ( .s ` N ) ( G ` y ) ) ) ) |
| 31 | 10 | ad2antrr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> N e. LMod ) |
| 32 | 12 | fveq2d | |- ( F e. ( M LMHom N ) -> ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` M ) ) ) |
| 33 | 32 | ad2antrr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` M ) ) ) |
| 34 | 23 33 | eleqtrrd | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> x e. ( Base ` ( Scalar ` N ) ) ) |
| 35 | eqid | |- ( Base ` N ) = ( Base ` N ) |
|
| 36 | 2 35 | lmhmf | |- ( F e. ( M LMHom N ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 37 | 36 | ad2antrr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F : ( Base ` M ) --> ( Base ` N ) ) |
| 38 | 37 24 | ffvelcdmd | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( F ` y ) e. ( Base ` N ) ) |
| 39 | 2 35 | lmhmf | |- ( G e. ( M LMHom N ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
| 40 | 39 | ad2antlr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G : ( Base ` M ) --> ( Base ` N ) ) |
| 41 | 40 24 | ffvelcdmd | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( G ` y ) e. ( Base ` N ) ) |
| 42 | eqid | |- ( Base ` ( Scalar ` N ) ) = ( Base ` ( Scalar ` N ) ) |
|
| 43 | 35 1 6 4 42 | lmodvsdi | |- ( ( N e. LMod /\ ( x e. ( Base ` ( Scalar ` N ) ) /\ ( F ` y ) e. ( Base ` N ) /\ ( G ` y ) e. ( Base ` N ) ) ) -> ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) = ( ( x ( .s ` N ) ( F ` y ) ) .+ ( x ( .s ` N ) ( G ` y ) ) ) ) |
| 44 | 31 34 38 41 43 | syl13anc | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) = ( ( x ( .s ` N ) ( F ` y ) ) .+ ( x ( .s ` N ) ( G ` y ) ) ) ) |
| 45 | 30 44 | eqtr4d | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) = ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) ) |
| 46 | 37 | ffnd | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> F Fn ( Base ` M ) ) |
| 47 | 40 | ffnd | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> G Fn ( Base ` M ) ) |
| 48 | fvexd | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( Base ` M ) e. _V ) |
|
| 49 | 8 | ad2antrr | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> M e. LMod ) |
| 50 | 2 5 3 7 | lmodvscl | |- ( ( M e. LMod /\ x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) -> ( x ( .s ` M ) y ) e. ( Base ` M ) ) |
| 51 | 49 23 24 50 | syl3anc | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` M ) y ) e. ( Base ` M ) ) |
| 52 | fnfvof | |- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ ( x ( .s ` M ) y ) e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( .s ` M ) y ) ) = ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) ) |
|
| 53 | 46 47 48 51 52 | syl22anc | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( .s ` M ) y ) ) = ( ( F ` ( x ( .s ` M ) y ) ) .+ ( G ` ( x ( .s ` M ) y ) ) ) ) |
| 54 | fnfvof | |- ( ( ( F Fn ( Base ` M ) /\ G Fn ( Base ` M ) ) /\ ( ( Base ` M ) e. _V /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` y ) = ( ( F ` y ) .+ ( G ` y ) ) ) |
|
| 55 | 46 47 48 24 54 | syl22anc | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` y ) = ( ( F ` y ) .+ ( G ` y ) ) ) |
| 56 | 55 | oveq2d | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( x ( .s ` N ) ( ( F oF .+ G ) ` y ) ) = ( x ( .s ` N ) ( ( F ` y ) .+ ( G ` y ) ) ) ) |
| 57 | 45 53 56 | 3eqtr4d | |- ( ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) /\ ( x e. ( Base ` ( Scalar ` M ) ) /\ y e. ( Base ` M ) ) ) -> ( ( F oF .+ G ) ` ( x ( .s ` M ) y ) ) = ( x ( .s ` N ) ( ( F oF .+ G ) ` y ) ) ) |
| 58 | 2 3 4 5 6 7 9 11 13 21 57 | islmhmd | |- ( ( F e. ( M LMHom N ) /\ G e. ( M LMHom N ) ) -> ( F oF .+ G ) e. ( M LMHom N ) ) |