This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijective module homomorphism is also converse homomorphic. (Contributed by Stefan O'Rear, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lmhmf1o.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| lmhmf1o.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | ||
| Assertion | lmhmf1o | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmhmf1o.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| 2 | lmhmf1o.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | |
| 3 | eqid | ⊢ ( ·𝑠 ‘ 𝑇 ) = ( ·𝑠 ‘ 𝑇 ) | |
| 4 | eqid | ⊢ ( ·𝑠 ‘ 𝑆 ) = ( ·𝑠 ‘ 𝑆 ) | |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑇 ) | |
| 6 | eqid | ⊢ ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑆 ) | |
| 7 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑇 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) | |
| 8 | lmhmlmod2 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑇 ∈ LMod ) | |
| 9 | 8 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑇 ∈ LMod ) |
| 10 | lmhmlmod1 | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝑆 ∈ LMod ) | |
| 11 | 10 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → 𝑆 ∈ LMod ) |
| 12 | 6 5 | lmhmsca | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑇 ) = ( Scalar ‘ 𝑆 ) ) |
| 13 | 12 | eqcomd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
| 14 | 13 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( Scalar ‘ 𝑆 ) = ( Scalar ‘ 𝑇 ) ) |
| 15 | lmghm | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 16 | 1 2 | ghmf1o | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) |
| 17 | 15 16 | syl | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) |
| 18 | 17 | biimpa | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| 19 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ) | |
| 20 | 14 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) |
| 21 | 20 | eleq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ↔ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) ) |
| 22 | 21 | biimpar | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 23 | 22 | adantrr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ) |
| 24 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 25 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 26 | 24 25 | syl | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 27 | 26 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 28 | 27 | ffvelcdmda | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ 𝑏 ∈ 𝑌 ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝑋 ) |
| 29 | 28 | adantrl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝑋 ) |
| 30 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑆 ) ) = ( Base ‘ ( Scalar ‘ 𝑆 ) ) | |
| 31 | 6 30 1 4 3 | lmhmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 32 | 19 23 29 31 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 33 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑏 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) | |
| 34 | 33 | ad2ant2l | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) = 𝑏 ) |
| 35 | 34 | oveq2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ) |
| 36 | 32 35 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ) |
| 37 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 38 | 11 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → 𝑆 ∈ LMod ) |
| 39 | 1 6 4 30 | lmodvscl | ⊢ ( ( 𝑆 ∈ LMod ∧ 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑆 ) ) ∧ ( ◡ 𝐹 ‘ 𝑏 ) ∈ 𝑋 ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 40 | 38 23 29 39 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ∈ 𝑋 ) |
| 41 | f1ocnvfv | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) → ( ◡ 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) | |
| 42 | 37 40 41 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) → ( ◡ 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) ) |
| 43 | 36 42 | mpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑎 ∈ ( Base ‘ ( Scalar ‘ 𝑇 ) ) ∧ 𝑏 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ ( 𝑎 ( ·𝑠 ‘ 𝑇 ) 𝑏 ) ) = ( 𝑎 ( ·𝑠 ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑏 ) ) ) |
| 44 | 2 3 4 5 6 7 9 11 14 18 43 | islmhmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) |
| 45 | 1 2 | lmhmf | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 46 | 45 | ffnd | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → 𝐹 Fn 𝑋 ) |
| 47 | 46 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) → 𝐹 Fn 𝑋 ) |
| 48 | 2 1 | lmhmf | ⊢ ( ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 49 | 48 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 50 | 49 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) → ◡ 𝐹 Fn 𝑌 ) |
| 51 | dff1o4 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ( 𝐹 Fn 𝑋 ∧ ◡ 𝐹 Fn 𝑌 ) ) | |
| 52 | 47 50 51 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 53 | 44 52 | impbida | ⊢ ( 𝐹 ∈ ( 𝑆 LMHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 LMHom 𝑆 ) ) ) |