This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A bijective group homomorphism is an isomorphism. (Contributed by Mario Carneiro, 13-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmf1o.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| ghmf1o.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | ||
| Assertion | ghmf1o | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmf1o.x | ⊢ 𝑋 = ( Base ‘ 𝑆 ) | |
| 2 | ghmf1o.y | ⊢ 𝑌 = ( Base ‘ 𝑇 ) | |
| 3 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) | |
| 4 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 5 | 3 4 | jca | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ) |
| 7 | f1ocnv | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) | |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 ) |
| 9 | f1of | ⊢ ( ◡ 𝐹 : 𝑌 –1-1-onto→ 𝑋 → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) | |
| 10 | 8 9 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 11 | simpll | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 12 | 10 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 13 | simprl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑥 ∈ 𝑌 ) | |
| 14 | 12 13 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ) |
| 15 | simprr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑦 ∈ 𝑌 ) | |
| 16 | 12 15 | ffvelcdmd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) |
| 17 | eqid | ⊢ ( +g ‘ 𝑆 ) = ( +g ‘ 𝑆 ) | |
| 18 | eqid | ⊢ ( +g ‘ 𝑇 ) = ( +g ‘ 𝑇 ) | |
| 19 | 1 17 18 | ghmlin | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 20 | 11 14 16 19 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 21 | simplr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) | |
| 22 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑥 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) | |
| 23 | 21 13 22 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) = 𝑥 ) |
| 24 | f1ocnvfv2 | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) | |
| 25 | 21 15 24 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) = 𝑦 ) |
| 26 | 23 25 | oveq12d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑥 ) ) ( +g ‘ 𝑇 ) ( 𝐹 ‘ ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 27 | 20 26 | eqtrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) |
| 28 | 11 4 | syl | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → 𝑆 ∈ Grp ) |
| 29 | 1 17 | grpcl | ⊢ ( ( 𝑆 ∈ Grp ∧ ( ◡ 𝐹 ‘ 𝑥 ) ∈ 𝑋 ∧ ( ◡ 𝐹 ‘ 𝑦 ) ∈ 𝑋 ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝑋 ) |
| 30 | 28 14 16 29 | syl3anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝑋 ) |
| 31 | f1ocnvfv | ⊢ ( ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ∧ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ∈ 𝑋 ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) | |
| 32 | 21 30 31 | syl2anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ( 𝐹 ‘ ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) = ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 33 | 27 32 | mpd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) ∧ ( 𝑥 ∈ 𝑌 ∧ 𝑦 ∈ 𝑌 ) ) → ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 34 | 33 | ralrimivva | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) |
| 35 | 10 34 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) |
| 36 | 2 1 18 17 | isghm | ⊢ ( ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ↔ ( ( 𝑇 ∈ Grp ∧ 𝑆 ∈ Grp ) ∧ ( ◡ 𝐹 : 𝑌 ⟶ 𝑋 ∧ ∀ 𝑥 ∈ 𝑌 ∀ 𝑦 ∈ 𝑌 ( ◡ 𝐹 ‘ ( 𝑥 ( +g ‘ 𝑇 ) 𝑦 ) ) = ( ( ◡ 𝐹 ‘ 𝑥 ) ( +g ‘ 𝑆 ) ( ◡ 𝐹 ‘ 𝑦 ) ) ) ) ) |
| 37 | 6 35 36 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) → ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) |
| 38 | 1 2 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 39 | 38 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑋 ⟶ 𝑌 ) |
| 40 | 39 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 Fn 𝑋 ) |
| 41 | 2 1 | ghmf | ⊢ ( ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 42 | 41 | adantl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ◡ 𝐹 : 𝑌 ⟶ 𝑋 ) |
| 43 | 42 | ffnd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → ◡ 𝐹 Fn 𝑌 ) |
| 44 | dff1o4 | ⊢ ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ( 𝐹 Fn 𝑋 ∧ ◡ 𝐹 Fn 𝑌 ) ) | |
| 45 | 40 43 44 | sylanbrc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) → 𝐹 : 𝑋 –1-1-onto→ 𝑌 ) |
| 46 | 37 45 | impbida | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 : 𝑋 –1-1-onto→ 𝑌 ↔ ◡ 𝐹 ∈ ( 𝑇 GrpHom 𝑆 ) ) ) |