This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of Kreyszig p. 28. (Contributed by NM, 29-Jan-2008) (Proof shortened by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| Assertion | lmcau | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom ( ⇝𝑡 ‘ 𝐽 ) ⊆ ( Cau ‘ 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcau.1 | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 2 | 1 | methaus | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐽 ∈ Haus ) |
| 3 | lmfun | ⊢ ( 𝐽 ∈ Haus → Fun ( ⇝𝑡 ‘ 𝐽 ) ) | |
| 4 | funfvbrb | ⊢ ( Fun ( ⇝𝑡 ‘ 𝐽 ) → ( 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ) | |
| 5 | 2 3 4 | 3syl | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) ↔ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ) |
| 6 | id | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 7 | 1 6 | lmmbr | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) ) |
| 8 | 7 | biimpa | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ∧ ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) ) |
| 9 | 8 | simp1d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ) |
| 10 | simprr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) | |
| 11 | simplll | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 12 | 8 | simp2d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ) |
| 13 | 12 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ) |
| 14 | rpre | ⊢ ( 𝑥 ∈ ℝ+ → 𝑥 ∈ ℝ ) | |
| 15 | 14 | ad2antlr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → 𝑥 ∈ ℝ ) |
| 16 | uzid | ⊢ ( 𝑗 ∈ ℤ → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) | |
| 17 | 16 | ad2antrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑗 ) ) |
| 18 | 17 | fvresd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑗 ) = ( 𝑓 ‘ 𝑗 ) ) |
| 19 | 10 17 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) ‘ 𝑗 ) ∈ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 20 | 18 19 | eqeltrrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( 𝑓 ‘ 𝑗 ) ∈ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 21 | blhalf | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ∈ 𝑋 ) ∧ ( 𝑥 ∈ ℝ ∧ ( 𝑓 ‘ 𝑗 ) ∈ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) | |
| 22 | 11 13 15 20 21 | syl22anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ⊆ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 23 | 10 22 | fssd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) ∧ ( 𝑗 ∈ ℤ ∧ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) → ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 24 | rphalfcl | ⊢ ( 𝑥 ∈ ℝ+ → ( 𝑥 / 2 ) ∈ ℝ+ ) | |
| 25 | 8 | simp3d | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ) |
| 26 | oveq2 | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) = ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) | |
| 27 | 26 | feq3d | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
| 28 | 27 | rexbidv | ⊢ ( 𝑦 = ( 𝑥 / 2 ) → ( ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) ↔ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
| 29 | 28 | rspcv | ⊢ ( ( 𝑥 / 2 ) ∈ ℝ+ → ( ∀ 𝑦 ∈ ℝ+ ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) 𝑦 ) → ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
| 30 | 24 25 29 | syl2im | ⊢ ( 𝑥 ∈ ℝ+ → ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
| 31 | 30 | impcom | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 32 | uzf | ⊢ ℤ≥ : ℤ ⟶ 𝒫 ℤ | |
| 33 | ffn | ⊢ ( ℤ≥ : ℤ ⟶ 𝒫 ℤ → ℤ≥ Fn ℤ ) | |
| 34 | reseq2 | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( 𝑓 ↾ 𝑢 ) = ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) ) | |
| 35 | id | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → 𝑢 = ( ℤ≥ ‘ 𝑗 ) ) | |
| 36 | 34 35 | feq12d | ⊢ ( 𝑢 = ( ℤ≥ ‘ 𝑗 ) → ( ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ↔ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
| 37 | 36 | rexrn | ⊢ ( ℤ≥ Fn ℤ → ( ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ↔ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) ) |
| 38 | 32 33 37 | mp2b | ⊢ ( ∃ 𝑢 ∈ ran ℤ≥ ( 𝑓 ↾ 𝑢 ) : 𝑢 ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ↔ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 39 | 31 38 | sylib | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ( ball ‘ 𝐷 ) ( 𝑥 / 2 ) ) ) |
| 40 | 23 39 | reximddv | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) ∧ 𝑥 ∈ ℝ+ ) → ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 41 | 40 | ralrimiva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) |
| 42 | iscau | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) | |
| 43 | 42 | adantr | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → ( 𝑓 ∈ ( Cau ‘ 𝐷 ) ↔ ( 𝑓 ∈ ( 𝑋 ↑pm ℂ ) ∧ ∀ 𝑥 ∈ ℝ+ ∃ 𝑗 ∈ ℤ ( 𝑓 ↾ ( ℤ≥ ‘ 𝑗 ) ) : ( ℤ≥ ‘ 𝑗 ) ⟶ ( ( 𝑓 ‘ 𝑗 ) ( ball ‘ 𝐷 ) 𝑥 ) ) ) ) |
| 44 | 9 41 43 | mpbir2and | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) |
| 45 | 44 | ex | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) ( ( ⇝𝑡 ‘ 𝐽 ) ‘ 𝑓 ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) |
| 46 | 5 45 | sylbid | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → ( 𝑓 ∈ dom ( ⇝𝑡 ‘ 𝐽 ) → 𝑓 ∈ ( Cau ‘ 𝐷 ) ) ) |
| 47 | 46 | ssrdv | ⊢ ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) → dom ( ⇝𝑡 ‘ 𝐽 ) ⊆ ( Cau ‘ 𝐷 ) ) |