This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Every convergent sequence in a metric space is a Cauchy sequence. Theorem 1.4-5 of Kreyszig p. 28. (Contributed by NM, 29-Jan-2008) (Proof shortened by Mario Carneiro, 5-May-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lmcau.1 | |- J = ( MetOpen ` D ) |
|
| Assertion | lmcau | |- ( D e. ( *Met ` X ) -> dom ( ~~>t ` J ) C_ ( Cau ` D ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lmcau.1 | |- J = ( MetOpen ` D ) |
|
| 2 | 1 | methaus | |- ( D e. ( *Met ` X ) -> J e. Haus ) |
| 3 | lmfun | |- ( J e. Haus -> Fun ( ~~>t ` J ) ) |
|
| 4 | funfvbrb | |- ( Fun ( ~~>t ` J ) -> ( f e. dom ( ~~>t ` J ) <-> f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) ) |
|
| 5 | 2 3 4 | 3syl | |- ( D e. ( *Met ` X ) -> ( f e. dom ( ~~>t ` J ) <-> f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) ) |
| 6 | id | |- ( D e. ( *Met ` X ) -> D e. ( *Met ` X ) ) |
|
| 7 | 1 6 | lmmbr | |- ( D e. ( *Met ` X ) -> ( f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) <-> ( f e. ( X ^pm CC ) /\ ( ( ~~>t ` J ) ` f ) e. X /\ A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) ) ) |
| 8 | 7 | biimpa | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( f e. ( X ^pm CC ) /\ ( ( ~~>t ` J ) ` f ) e. X /\ A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) ) |
| 9 | 8 | simp1d | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> f e. ( X ^pm CC ) ) |
| 10 | simprr | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
|
| 11 | simplll | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> D e. ( *Met ` X ) ) |
|
| 12 | 8 | simp2d | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( ( ~~>t ` J ) ` f ) e. X ) |
| 13 | 12 | ad2antrr | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ~~>t ` J ) ` f ) e. X ) |
| 14 | rpre | |- ( x e. RR+ -> x e. RR ) |
|
| 15 | 14 | ad2antlr | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> x e. RR ) |
| 16 | uzid | |- ( j e. ZZ -> j e. ( ZZ>= ` j ) ) |
|
| 17 | 16 | ad2antrl | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> j e. ( ZZ>= ` j ) ) |
| 18 | 17 | fvresd | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( f |` ( ZZ>= ` j ) ) ` j ) = ( f ` j ) ) |
| 19 | 10 17 | ffvelcdmd | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( f |` ( ZZ>= ` j ) ) ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
| 20 | 18 19 | eqeltrrd | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
| 21 | blhalf | |- ( ( ( D e. ( *Met ` X ) /\ ( ( ~~>t ` J ) ` f ) e. X ) /\ ( x e. RR /\ ( f ` j ) e. ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) C_ ( ( f ` j ) ( ball ` D ) x ) ) |
|
| 22 | 11 13 15 20 21 | syl22anc | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) C_ ( ( f ` j ) ( ball ` D ) x ) ) |
| 23 | 10 22 | fssd | |- ( ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) /\ ( j e. ZZ /\ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) -> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) |
| 24 | rphalfcl | |- ( x e. RR+ -> ( x / 2 ) e. RR+ ) |
|
| 25 | 8 | simp3d | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) ) |
| 26 | oveq2 | |- ( y = ( x / 2 ) -> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) = ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
|
| 27 | 26 | feq3d | |- ( y = ( x / 2 ) -> ( ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) <-> ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
| 28 | 27 | rexbidv | |- ( y = ( x / 2 ) -> ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) <-> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
| 29 | 28 | rspcv | |- ( ( x / 2 ) e. RR+ -> ( A. y e. RR+ E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) y ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
| 30 | 24 25 29 | syl2im | |- ( x e. RR+ -> ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
| 31 | 30 | impcom | |- ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
| 32 | uzf | |- ZZ>= : ZZ --> ~P ZZ |
|
| 33 | ffn | |- ( ZZ>= : ZZ --> ~P ZZ -> ZZ>= Fn ZZ ) |
|
| 34 | reseq2 | |- ( u = ( ZZ>= ` j ) -> ( f |` u ) = ( f |` ( ZZ>= ` j ) ) ) |
|
| 35 | id | |- ( u = ( ZZ>= ` j ) -> u = ( ZZ>= ` j ) ) |
|
| 36 | 34 35 | feq12d | |- ( u = ( ZZ>= ` j ) -> ( ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
| 37 | 36 | rexrn | |- ( ZZ>= Fn ZZ -> ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) ) |
| 38 | 32 33 37 | mp2b | |- ( E. u e. ran ZZ>= ( f |` u ) : u --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) <-> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
| 39 | 31 38 | sylib | |- ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( ( ~~>t ` J ) ` f ) ( ball ` D ) ( x / 2 ) ) ) |
| 40 | 23 39 | reximddv | |- ( ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) /\ x e. RR+ ) -> E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) |
| 41 | 40 | ralrimiva | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) |
| 42 | iscau | |- ( D e. ( *Met ` X ) -> ( f e. ( Cau ` D ) <-> ( f e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) ) ) |
|
| 43 | 42 | adantr | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> ( f e. ( Cau ` D ) <-> ( f e. ( X ^pm CC ) /\ A. x e. RR+ E. j e. ZZ ( f |` ( ZZ>= ` j ) ) : ( ZZ>= ` j ) --> ( ( f ` j ) ( ball ` D ) x ) ) ) ) |
| 44 | 9 41 43 | mpbir2and | |- ( ( D e. ( *Met ` X ) /\ f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) ) -> f e. ( Cau ` D ) ) |
| 45 | 44 | ex | |- ( D e. ( *Met ` X ) -> ( f ( ~~>t ` J ) ( ( ~~>t ` J ) ` f ) -> f e. ( Cau ` D ) ) ) |
| 46 | 5 45 | sylbid | |- ( D e. ( *Met ` X ) -> ( f e. dom ( ~~>t ` J ) -> f e. ( Cau ` D ) ) ) |
| 47 | 46 | ssrdv | |- ( D e. ( *Met ` X ) -> dom ( ~~>t ` J ) C_ ( Cau ` D ) ) |