This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Idempotence of the "locally" predicate, i.e. being "locally A " is a local property. (Contributed by Mario Carneiro, 2-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | llyidm | ⊢ Locally Locally 𝐴 = Locally 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | llytop | ⊢ ( 𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Top ) | |
| 2 | llyi | ⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑢 ∈ 𝑗 ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) | |
| 3 | simprr3 | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) | |
| 4 | simprl | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) | |
| 5 | ssidd | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑢 ) | |
| 6 | 1 | 3ad2ant1 | ⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → 𝑗 ∈ Top ) |
| 7 | 6 | adantr | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑗 ∈ Top ) |
| 8 | restopn2 | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) | |
| 9 | 7 4 8 | syl2anc | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑢 ∈ 𝑗 ∧ 𝑢 ⊆ 𝑢 ) ) ) |
| 10 | 4 5 9 | mpbir2and | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ) |
| 11 | simprr2 | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑦 ∈ 𝑢 ) | |
| 12 | llyi | ⊢ ( ( ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ∧ 𝑢 ∈ ( 𝑗 ↾t 𝑢 ) ∧ 𝑦 ∈ 𝑢 ) → ∃ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) | |
| 13 | 3 10 11 12 | syl3anc | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 14 | restopn2 | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑢 ∈ 𝑗 ) → ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢 ) ) ) | |
| 15 | 7 4 14 | syl2anc | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ↔ ( 𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢 ) ) ) |
| 16 | simpl | ⊢ ( ( 𝑣 ∈ 𝑗 ∧ 𝑣 ⊆ 𝑢 ) → 𝑣 ∈ 𝑗 ) | |
| 17 | 15 16 | biimtrdi | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) → 𝑣 ∈ 𝑗 ) ) |
| 18 | simprl | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝑗 ) | |
| 19 | simprr1 | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑢 ) | |
| 20 | simprr1 | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) | |
| 21 | 20 | adantr | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ⊆ 𝑥 ) |
| 22 | 19 21 | sstrd | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ⊆ 𝑥 ) |
| 23 | velpw | ⊢ ( 𝑣 ∈ 𝒫 𝑥 ↔ 𝑣 ⊆ 𝑥 ) | |
| 24 | 22 23 | sylibr | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ 𝒫 𝑥 ) |
| 25 | 18 24 | elind | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ) |
| 26 | simprr2 | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑦 ∈ 𝑣 ) | |
| 27 | 7 | adantr | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑗 ∈ Top ) |
| 28 | simplrl | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → 𝑢 ∈ 𝑗 ) | |
| 29 | restabs | ⊢ ( ( 𝑗 ∈ Top ∧ 𝑣 ⊆ 𝑢 ∧ 𝑢 ∈ 𝑗 ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) | |
| 30 | 27 19 28 29 | syl3anc | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) = ( 𝑗 ↾t 𝑣 ) ) |
| 31 | simprr3 | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) | |
| 32 | 30 31 | eqeltrrd | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) |
| 33 | 25 26 32 | jca32 | ⊢ ( ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) ∧ ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 34 | 33 | ex | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ 𝑗 ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
| 35 | 17 34 | syland | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ( 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ∧ ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) ) → ( 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ∧ ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) ) |
| 36 | 35 | reximdv2 | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ( ∃ 𝑣 ∈ ( 𝑗 ↾t 𝑢 ) ( 𝑣 ⊆ 𝑢 ∧ 𝑦 ∈ 𝑣 ∧ ( ( 𝑗 ↾t 𝑢 ) ↾t 𝑣 ) ∈ 𝐴 ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) |
| 37 | 13 36 | mpd | ⊢ ( ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ∧ ( 𝑢 ∈ 𝑗 ∧ ( 𝑢 ⊆ 𝑥 ∧ 𝑦 ∈ 𝑢 ∧ ( 𝑗 ↾t 𝑢 ) ∈ Locally 𝐴 ) ) ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 38 | 2 37 | rexlimddv | ⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 39 | 38 | 3expb | ⊢ ( ( 𝑗 ∈ Locally Locally 𝐴 ∧ ( 𝑥 ∈ 𝑗 ∧ 𝑦 ∈ 𝑥 ) ) → ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 40 | 39 | ralrimivva | ⊢ ( 𝑗 ∈ Locally Locally 𝐴 → ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) |
| 41 | islly | ⊢ ( 𝑗 ∈ Locally 𝐴 ↔ ( 𝑗 ∈ Top ∧ ∀ 𝑥 ∈ 𝑗 ∀ 𝑦 ∈ 𝑥 ∃ 𝑣 ∈ ( 𝑗 ∩ 𝒫 𝑥 ) ( 𝑦 ∈ 𝑣 ∧ ( 𝑗 ↾t 𝑣 ) ∈ 𝐴 ) ) ) | |
| 42 | 1 40 41 | sylanbrc | ⊢ ( 𝑗 ∈ Locally Locally 𝐴 → 𝑗 ∈ Locally 𝐴 ) |
| 43 | 42 | ssriv | ⊢ Locally Locally 𝐴 ⊆ Locally 𝐴 |
| 44 | llyrest | ⊢ ( ( 𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) → ( 𝑗 ↾t 𝑥 ) ∈ Locally 𝐴 ) | |
| 45 | 44 | adantl | ⊢ ( ( ⊤ ∧ ( 𝑗 ∈ Locally 𝐴 ∧ 𝑥 ∈ 𝑗 ) ) → ( 𝑗 ↾t 𝑥 ) ∈ Locally 𝐴 ) |
| 46 | llytop | ⊢ ( 𝑗 ∈ Locally 𝐴 → 𝑗 ∈ Top ) | |
| 47 | 46 | ssriv | ⊢ Locally 𝐴 ⊆ Top |
| 48 | 47 | a1i | ⊢ ( ⊤ → Locally 𝐴 ⊆ Top ) |
| 49 | 45 48 | restlly | ⊢ ( ⊤ → Locally 𝐴 ⊆ Locally Locally 𝐴 ) |
| 50 | 49 | mptru | ⊢ Locally 𝐴 ⊆ Locally Locally 𝐴 |
| 51 | 43 50 | eqssi | ⊢ Locally Locally 𝐴 = Locally 𝐴 |