This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfuhgr1v0e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| lfuhgr1v0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | ||
| lfuhgr1v0e.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | ||
| Assertion | lfuhgr1v0e | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgr1v0e.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | lfuhgr1v0e.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 3 | lfuhgr1v0e.e | ⊢ 𝐸 = { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 4 | 2 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐼 = ( iEdg ‘ 𝐺 ) ) |
| 5 | 2 | dmeqi | ⊢ dom 𝐼 = dom ( iEdg ‘ 𝐺 ) |
| 6 | 5 | a1i | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → dom 𝐼 = dom ( iEdg ‘ 𝐺 ) ) |
| 7 | 1 | fvexi | ⊢ 𝑉 ∈ V |
| 8 | hash1snb | ⊢ ( 𝑉 ∈ V → ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) ) | |
| 9 | 7 8 | ax-mp | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 ↔ ∃ 𝑣 𝑉 = { 𝑣 } ) |
| 10 | pweq | ⊢ ( 𝑉 = { 𝑣 } → 𝒫 𝑉 = 𝒫 { 𝑣 } ) | |
| 11 | 10 | rabeqdv | ⊢ ( 𝑉 = { 𝑣 } → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 { 𝑣 } ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 12 | 2pos | ⊢ 0 < 2 | |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | 2re | ⊢ 2 ∈ ℝ | |
| 15 | 13 14 | ltnlei | ⊢ ( 0 < 2 ↔ ¬ 2 ≤ 0 ) |
| 16 | 12 15 | mpbi | ⊢ ¬ 2 ≤ 0 |
| 17 | 1lt2 | ⊢ 1 < 2 | |
| 18 | 1re | ⊢ 1 ∈ ℝ | |
| 19 | 18 14 | ltnlei | ⊢ ( 1 < 2 ↔ ¬ 2 ≤ 1 ) |
| 20 | 17 19 | mpbi | ⊢ ¬ 2 ≤ 1 |
| 21 | 0ex | ⊢ ∅ ∈ V | |
| 22 | vsnex | ⊢ { 𝑣 } ∈ V | |
| 23 | fveq2 | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ ∅ ) ) | |
| 24 | hash0 | ⊢ ( ♯ ‘ ∅ ) = 0 | |
| 25 | 23 24 | eqtrdi | ⊢ ( 𝑥 = ∅ → ( ♯ ‘ 𝑥 ) = 0 ) |
| 26 | 25 | breq2d | ⊢ ( 𝑥 = ∅ → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 0 ) ) |
| 27 | 26 | notbid | ⊢ ( 𝑥 = ∅ → ( ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ¬ 2 ≤ 0 ) ) |
| 28 | fveq2 | ⊢ ( 𝑥 = { 𝑣 } → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ { 𝑣 } ) ) | |
| 29 | hashsng | ⊢ ( 𝑣 ∈ V → ( ♯ ‘ { 𝑣 } ) = 1 ) | |
| 30 | 29 | elv | ⊢ ( ♯ ‘ { 𝑣 } ) = 1 |
| 31 | 28 30 | eqtrdi | ⊢ ( 𝑥 = { 𝑣 } → ( ♯ ‘ 𝑥 ) = 1 ) |
| 32 | 31 | breq2d | ⊢ ( 𝑥 = { 𝑣 } → ( 2 ≤ ( ♯ ‘ 𝑥 ) ↔ 2 ≤ 1 ) ) |
| 33 | 32 | notbid | ⊢ ( 𝑥 = { 𝑣 } → ( ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ¬ 2 ≤ 1 ) ) |
| 34 | 21 22 27 33 | ralpr | ⊢ ( ∀ 𝑥 ∈ { ∅ , { 𝑣 } } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ( ¬ 2 ≤ 0 ∧ ¬ 2 ≤ 1 ) ) |
| 35 | 16 20 34 | mpbir2an | ⊢ ∀ 𝑥 ∈ { ∅ , { 𝑣 } } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) |
| 36 | pwsn | ⊢ 𝒫 { 𝑣 } = { ∅ , { 𝑣 } } | |
| 37 | 36 | raleqi | ⊢ ( ∀ 𝑥 ∈ 𝒫 { 𝑣 } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ { ∅ , { 𝑣 } } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ) |
| 38 | 35 37 | mpbir | ⊢ ∀ 𝑥 ∈ 𝒫 { 𝑣 } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) |
| 39 | rabeq0 | ⊢ ( { 𝑥 ∈ 𝒫 { 𝑣 } ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ↔ ∀ 𝑥 ∈ 𝒫 { 𝑣 } ¬ 2 ≤ ( ♯ ‘ 𝑥 ) ) | |
| 40 | 38 39 | mpbir | ⊢ { 𝑥 ∈ 𝒫 { 𝑣 } ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ |
| 41 | 11 40 | eqtrdi | ⊢ ( 𝑉 = { 𝑣 } → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) |
| 42 | 41 | a1d | ⊢ ( 𝑉 = { 𝑣 } → ( 𝐺 ∈ UHGraph → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) ) |
| 43 | 42 | exlimiv | ⊢ ( ∃ 𝑣 𝑉 = { 𝑣 } → ( 𝐺 ∈ UHGraph → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) ) |
| 44 | 9 43 | sylbi | ⊢ ( ( ♯ ‘ 𝑉 ) = 1 → ( 𝐺 ∈ UHGraph → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) ) |
| 45 | 44 | impcom | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → { 𝑥 ∈ 𝒫 𝑉 ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = ∅ ) |
| 46 | 3 45 | eqtrid | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → 𝐸 = ∅ ) |
| 47 | 4 6 46 | feq123d | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ) → ( 𝐼 : dom 𝐼 ⟶ 𝐸 ↔ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ) ) |
| 48 | 47 | biimp3a | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ) |
| 49 | f00 | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ ↔ ( ( iEdg ‘ 𝐺 ) = ∅ ∧ dom ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 50 | 49 | simplbi | ⊢ ( ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ ∅ → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 51 | 48 50 | syl | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 52 | uhgriedg0edg0 | ⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 53 | 52 | 3ad2ant1 | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 54 | 51 53 | mpbird | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ 𝑉 ) = 1 ∧ 𝐼 : dom 𝐼 ⟶ 𝐸 ) → ( Edg ‘ 𝐺 ) = ∅ ) |