This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A simple graph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 21-Mar-2021) (Proof shortened by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | usgr1vr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgruhgr | ⊢ ( 𝐺 ∈ USGraph → 𝐺 ∈ UHGraph ) | |
| 2 | 1 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → 𝐺 ∈ UHGraph ) |
| 3 | fveq2 | ⊢ ( ( Vtx ‘ 𝐺 ) = { 𝐴 } → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = ( ♯ ‘ { 𝐴 } ) ) | |
| 4 | hashsng | ⊢ ( 𝐴 ∈ 𝑋 → ( ♯ ‘ { 𝐴 } ) = 1 ) | |
| 5 | 3 4 | sylan9eqr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ) |
| 7 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 8 | eqid | ⊢ ( iEdg ‘ 𝐺 ) = ( iEdg ‘ 𝐺 ) | |
| 9 | 7 8 | usgrislfuspgr | ⊢ ( 𝐺 ∈ USGraph ↔ ( 𝐺 ∈ USPGraph ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) ) |
| 10 | 9 | simprbi | ⊢ ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) |
| 12 | eqid | ⊢ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } = { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } | |
| 13 | 7 8 12 | lfuhgr1v0e | ⊢ ( ( 𝐺 ∈ UHGraph ∧ ( ♯ ‘ ( Vtx ‘ 𝐺 ) ) = 1 ∧ ( iEdg ‘ 𝐺 ) : dom ( iEdg ‘ 𝐺 ) ⟶ { 𝑥 ∈ 𝒫 ( Vtx ‘ 𝐺 ) ∣ 2 ≤ ( ♯ ‘ 𝑥 ) } ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 14 | 2 6 11 13 | syl3anc | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( Edg ‘ 𝐺 ) = ∅ ) |
| 15 | uhgriedg0edg0 | ⊢ ( 𝐺 ∈ UHGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) | |
| 16 | 1 15 | syl | ⊢ ( 𝐺 ∈ USGraph → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 17 | 16 | adantl | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( ( Edg ‘ 𝐺 ) = ∅ ↔ ( iEdg ‘ 𝐺 ) = ∅ ) ) |
| 18 | 14 17 | mpbid | ⊢ ( ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) ∧ 𝐺 ∈ USGraph ) → ( iEdg ‘ 𝐺 ) = ∅ ) |
| 19 | 18 | ex | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( Vtx ‘ 𝐺 ) = { 𝐴 } ) → ( 𝐺 ∈ USGraph → ( iEdg ‘ 𝐺 ) = ∅ ) ) |