This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A loop-free hypergraph with one vertex has no edges. (Contributed by AV, 18-Oct-2020) (Revised by AV, 2-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lfuhgr1v0e.v | |- V = ( Vtx ` G ) |
|
| lfuhgr1v0e.i | |- I = ( iEdg ` G ) |
||
| lfuhgr1v0e.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
||
| Assertion | lfuhgr1v0e | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lfuhgr1v0e.v | |- V = ( Vtx ` G ) |
|
| 2 | lfuhgr1v0e.i | |- I = ( iEdg ` G ) |
|
| 3 | lfuhgr1v0e.e | |- E = { x e. ~P V | 2 <_ ( # ` x ) } |
|
| 4 | 2 | a1i | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> I = ( iEdg ` G ) ) |
| 5 | 2 | dmeqi | |- dom I = dom ( iEdg ` G ) |
| 6 | 5 | a1i | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> dom I = dom ( iEdg ` G ) ) |
| 7 | 1 | fvexi | |- V e. _V |
| 8 | hash1snb | |- ( V e. _V -> ( ( # ` V ) = 1 <-> E. v V = { v } ) ) |
|
| 9 | 7 8 | ax-mp | |- ( ( # ` V ) = 1 <-> E. v V = { v } ) |
| 10 | pweq | |- ( V = { v } -> ~P V = ~P { v } ) |
|
| 11 | 10 | rabeqdv | |- ( V = { v } -> { x e. ~P V | 2 <_ ( # ` x ) } = { x e. ~P { v } | 2 <_ ( # ` x ) } ) |
| 12 | 2pos | |- 0 < 2 |
|
| 13 | 0re | |- 0 e. RR |
|
| 14 | 2re | |- 2 e. RR |
|
| 15 | 13 14 | ltnlei | |- ( 0 < 2 <-> -. 2 <_ 0 ) |
| 16 | 12 15 | mpbi | |- -. 2 <_ 0 |
| 17 | 1lt2 | |- 1 < 2 |
|
| 18 | 1re | |- 1 e. RR |
|
| 19 | 18 14 | ltnlei | |- ( 1 < 2 <-> -. 2 <_ 1 ) |
| 20 | 17 19 | mpbi | |- -. 2 <_ 1 |
| 21 | 0ex | |- (/) e. _V |
|
| 22 | vsnex | |- { v } e. _V |
|
| 23 | fveq2 | |- ( x = (/) -> ( # ` x ) = ( # ` (/) ) ) |
|
| 24 | hash0 | |- ( # ` (/) ) = 0 |
|
| 25 | 23 24 | eqtrdi | |- ( x = (/) -> ( # ` x ) = 0 ) |
| 26 | 25 | breq2d | |- ( x = (/) -> ( 2 <_ ( # ` x ) <-> 2 <_ 0 ) ) |
| 27 | 26 | notbid | |- ( x = (/) -> ( -. 2 <_ ( # ` x ) <-> -. 2 <_ 0 ) ) |
| 28 | fveq2 | |- ( x = { v } -> ( # ` x ) = ( # ` { v } ) ) |
|
| 29 | hashsng | |- ( v e. _V -> ( # ` { v } ) = 1 ) |
|
| 30 | 29 | elv | |- ( # ` { v } ) = 1 |
| 31 | 28 30 | eqtrdi | |- ( x = { v } -> ( # ` x ) = 1 ) |
| 32 | 31 | breq2d | |- ( x = { v } -> ( 2 <_ ( # ` x ) <-> 2 <_ 1 ) ) |
| 33 | 32 | notbid | |- ( x = { v } -> ( -. 2 <_ ( # ` x ) <-> -. 2 <_ 1 ) ) |
| 34 | 21 22 27 33 | ralpr | |- ( A. x e. { (/) , { v } } -. 2 <_ ( # ` x ) <-> ( -. 2 <_ 0 /\ -. 2 <_ 1 ) ) |
| 35 | 16 20 34 | mpbir2an | |- A. x e. { (/) , { v } } -. 2 <_ ( # ` x ) |
| 36 | pwsn | |- ~P { v } = { (/) , { v } } |
|
| 37 | 36 | raleqi | |- ( A. x e. ~P { v } -. 2 <_ ( # ` x ) <-> A. x e. { (/) , { v } } -. 2 <_ ( # ` x ) ) |
| 38 | 35 37 | mpbir | |- A. x e. ~P { v } -. 2 <_ ( # ` x ) |
| 39 | rabeq0 | |- ( { x e. ~P { v } | 2 <_ ( # ` x ) } = (/) <-> A. x e. ~P { v } -. 2 <_ ( # ` x ) ) |
|
| 40 | 38 39 | mpbir | |- { x e. ~P { v } | 2 <_ ( # ` x ) } = (/) |
| 41 | 11 40 | eqtrdi | |- ( V = { v } -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) |
| 42 | 41 | a1d | |- ( V = { v } -> ( G e. UHGraph -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) ) |
| 43 | 42 | exlimiv | |- ( E. v V = { v } -> ( G e. UHGraph -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) ) |
| 44 | 9 43 | sylbi | |- ( ( # ` V ) = 1 -> ( G e. UHGraph -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) ) |
| 45 | 44 | impcom | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> { x e. ~P V | 2 <_ ( # ` x ) } = (/) ) |
| 46 | 3 45 | eqtrid | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> E = (/) ) |
| 47 | 4 6 46 | feq123d | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 ) -> ( I : dom I --> E <-> ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) ) ) |
| 48 | 47 | biimp3a | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) ) |
| 49 | f00 | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) <-> ( ( iEdg ` G ) = (/) /\ dom ( iEdg ` G ) = (/) ) ) |
|
| 50 | 49 | simplbi | |- ( ( iEdg ` G ) : dom ( iEdg ` G ) --> (/) -> ( iEdg ` G ) = (/) ) |
| 51 | 48 50 | syl | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( iEdg ` G ) = (/) ) |
| 52 | uhgriedg0edg0 | |- ( G e. UHGraph -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
|
| 53 | 52 | 3ad2ant1 | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( ( Edg ` G ) = (/) <-> ( iEdg ` G ) = (/) ) ) |
| 54 | 51 53 | mpbird | |- ( ( G e. UHGraph /\ ( # ` V ) = 1 /\ I : dom I --> E ) -> ( Edg ` G ) = (/) ) |