This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lerec2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 2 | rereccl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 1 / 𝐵 ) ∈ ℝ ) | |
| 3 | 1 2 | syldan | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 / 𝐵 ) ∈ ℝ ) |
| 4 | recgt0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 0 < ( 1 / 𝐵 ) ) | |
| 5 | 3 4 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( ( 1 / 𝐵 ) ∈ ℝ ∧ 0 < ( 1 / 𝐵 ) ) ) |
| 6 | lerec | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( ( 1 / 𝐵 ) ∈ ℝ ∧ 0 < ( 1 / 𝐵 ) ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ ( 1 / ( 1 / 𝐵 ) ) ≤ ( 1 / 𝐴 ) ) ) | |
| 7 | 5 6 | sylan2 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ ( 1 / ( 1 / 𝐵 ) ) ≤ ( 1 / 𝐴 ) ) ) |
| 8 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 9 | recrec | ⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) → ( 1 / ( 1 / 𝐵 ) ) = 𝐵 ) | |
| 10 | 8 1 9 | syl2an2r | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 1 / ( 1 / 𝐵 ) ) = 𝐵 ) |
| 11 | 10 | adantl | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / ( 1 / 𝐵 ) ) = 𝐵 ) |
| 12 | 11 | breq1d | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 1 / ( 1 / 𝐵 ) ) ≤ ( 1 / 𝐴 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) |
| 13 | 7 12 | bitrd | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 ≤ ( 1 / 𝐵 ) ↔ 𝐵 ≤ ( 1 / 𝐴 ) ) ) |