This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Invert ratios of positive numbers and swap their ordering. (Contributed by NM, 9-Jan-2006)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ledivdiv | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℝ ) | |
| 2 | gt0ne0 | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ≠ 0 ) | |
| 3 | 1 2 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) |
| 4 | redivcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) | |
| 5 | 4 | 3expb | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 𝐵 ≠ 0 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 6 | 3 5 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 7 | 6 | adantlr | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 𝐴 / 𝐵 ) ∈ ℝ ) |
| 8 | divgt0 | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → 0 < ( 𝐴 / 𝐵 ) ) | |
| 9 | 7 8 | jca | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 / 𝐵 ) ) ) |
| 10 | simpl | ⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 𝐷 ∈ ℝ ) | |
| 11 | gt0ne0 | ⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 𝐷 ≠ 0 ) | |
| 12 | 10 11 | jca | ⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → ( 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) ) |
| 13 | redivcl | ⊢ ( ( 𝐶 ∈ ℝ ∧ 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) | |
| 14 | 13 | 3expb | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 𝐷 ≠ 0 ) ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 15 | 12 14 | sylan2 | ⊢ ( ( 𝐶 ∈ ℝ ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 16 | 15 | adantlr | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 𝐶 / 𝐷 ) ∈ ℝ ) |
| 17 | divgt0 | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → 0 < ( 𝐶 / 𝐷 ) ) | |
| 18 | 16 17 | jca | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( ( 𝐶 / 𝐷 ) ∈ ℝ ∧ 0 < ( 𝐶 / 𝐷 ) ) ) |
| 19 | lerec | ⊢ ( ( ( ( 𝐴 / 𝐵 ) ∈ ℝ ∧ 0 < ( 𝐴 / 𝐵 ) ) ∧ ( ( 𝐶 / 𝐷 ) ∈ ℝ ∧ 0 < ( 𝐶 / 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 1 / ( 𝐶 / 𝐷 ) ) ≤ ( 1 / ( 𝐴 / 𝐵 ) ) ) ) | |
| 20 | 9 18 19 | syl2an | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 1 / ( 𝐶 / 𝐷 ) ) ≤ ( 1 / ( 𝐴 / 𝐵 ) ) ) ) |
| 21 | recn | ⊢ ( 𝐶 ∈ ℝ → 𝐶 ∈ ℂ ) | |
| 22 | 21 | adantr | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ∈ ℂ ) |
| 23 | gt0ne0 | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → 𝐶 ≠ 0 ) | |
| 24 | 22 23 | jca | ⊢ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) → ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ) |
| 25 | recn | ⊢ ( 𝐷 ∈ ℝ → 𝐷 ∈ ℂ ) | |
| 26 | 25 | adantr | ⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → 𝐷 ∈ ℂ ) |
| 27 | 26 11 | jca | ⊢ ( ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) → ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) |
| 28 | recdiv | ⊢ ( ( ( 𝐶 ∈ ℂ ∧ 𝐶 ≠ 0 ) ∧ ( 𝐷 ∈ ℂ ∧ 𝐷 ≠ 0 ) ) → ( 1 / ( 𝐶 / 𝐷 ) ) = ( 𝐷 / 𝐶 ) ) | |
| 29 | 24 27 28 | syl2an | ⊢ ( ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) → ( 1 / ( 𝐶 / 𝐷 ) ) = ( 𝐷 / 𝐶 ) ) |
| 30 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 31 | 30 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ∈ ℂ ) |
| 32 | gt0ne0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 𝐴 ≠ 0 ) | |
| 33 | 31 32 | jca | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ) |
| 34 | recn | ⊢ ( 𝐵 ∈ ℝ → 𝐵 ∈ ℂ ) | |
| 35 | 34 | adantr | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → 𝐵 ∈ ℂ ) |
| 36 | 35 2 | jca | ⊢ ( ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) → ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) |
| 37 | recdiv | ⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ) ∧ ( 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) | |
| 38 | 33 36 37 | syl2an | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) → ( 1 / ( 𝐴 / 𝐵 ) ) = ( 𝐵 / 𝐴 ) ) |
| 39 | 29 38 | breqan12rd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 1 / ( 𝐶 / 𝐷 ) ) ≤ ( 1 / ( 𝐴 / 𝐵 ) ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |
| 40 | 20 39 | bitrd | ⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐵 ∈ ℝ ∧ 0 < 𝐵 ) ) ∧ ( ( 𝐶 ∈ ℝ ∧ 0 < 𝐶 ) ∧ ( 𝐷 ∈ ℝ ∧ 0 < 𝐷 ) ) ) → ( ( 𝐴 / 𝐵 ) ≤ ( 𝐶 / 𝐷 ) ↔ ( 𝐷 / 𝐶 ) ≤ ( 𝐵 / 𝐴 ) ) ) |