This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Reciprocal swap in a 'less than or equal to' relation. (Contributed by NM, 24-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | lerec2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ ( 1 / B ) <-> B <_ ( 1 / A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gt0ne0 | |- ( ( B e. RR /\ 0 < B ) -> B =/= 0 ) |
|
| 2 | rereccl | |- ( ( B e. RR /\ B =/= 0 ) -> ( 1 / B ) e. RR ) |
|
| 3 | 1 2 | syldan | |- ( ( B e. RR /\ 0 < B ) -> ( 1 / B ) e. RR ) |
| 4 | recgt0 | |- ( ( B e. RR /\ 0 < B ) -> 0 < ( 1 / B ) ) |
|
| 5 | 3 4 | jca | |- ( ( B e. RR /\ 0 < B ) -> ( ( 1 / B ) e. RR /\ 0 < ( 1 / B ) ) ) |
| 6 | lerec | |- ( ( ( A e. RR /\ 0 < A ) /\ ( ( 1 / B ) e. RR /\ 0 < ( 1 / B ) ) ) -> ( A <_ ( 1 / B ) <-> ( 1 / ( 1 / B ) ) <_ ( 1 / A ) ) ) |
|
| 7 | 5 6 | sylan2 | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ ( 1 / B ) <-> ( 1 / ( 1 / B ) ) <_ ( 1 / A ) ) ) |
| 8 | recn | |- ( B e. RR -> B e. CC ) |
|
| 9 | recrec | |- ( ( B e. CC /\ B =/= 0 ) -> ( 1 / ( 1 / B ) ) = B ) |
|
| 10 | 8 1 9 | syl2an2r | |- ( ( B e. RR /\ 0 < B ) -> ( 1 / ( 1 / B ) ) = B ) |
| 11 | 10 | adantl | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( 1 / ( 1 / B ) ) = B ) |
| 12 | 11 | breq1d | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( ( 1 / ( 1 / B ) ) <_ ( 1 / A ) <-> B <_ ( 1 / A ) ) ) |
| 13 | 7 12 | bitrd | |- ( ( ( A e. RR /\ 0 < A ) /\ ( B e. RR /\ 0 < B ) ) -> ( A <_ ( 1 / B ) <-> B <_ ( 1 / A ) ) ) |