This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F which gives the distance from a point to a set is a continuous function into the metric topology of the extended reals. (Contributed by Mario Carneiro, 14-Feb-2015) (Revised by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| metdscn.c | ⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) | ||
| metdscn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) | ||
| Assertion | metdscn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metdscn.c | ⊢ 𝐶 = ( dist ‘ ℝ*𝑠 ) | |
| 4 | metdscn.k | ⊢ 𝐾 = ( MetOpen ‘ 𝐶 ) | |
| 5 | 1 | metdsf | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 6 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 7 | fss | ⊢ ( ( 𝐹 : 𝑋 ⟶ ( 0 [,] +∞ ) ∧ ( 0 [,] +∞ ) ⊆ ℝ* ) → 𝐹 : 𝑋 ⟶ ℝ* ) | |
| 8 | 5 6 7 | sylancl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 : 𝑋 ⟶ ℝ* ) |
| 9 | simprr | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → 𝑟 ∈ ℝ+ ) | |
| 10 | 8 | ad2antrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → 𝐹 : 𝑋 ⟶ ℝ* ) |
| 11 | simplrl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → 𝑧 ∈ 𝑋 ) | |
| 12 | 10 11 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ) |
| 13 | simprl | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → 𝑤 ∈ 𝑋 ) | |
| 14 | 10 13 | ffvelcdmd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ) |
| 15 | 3 | xrsdsval | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) ∈ ℝ* ∧ ( 𝐹 ‘ 𝑤 ) ∈ ℝ* ) → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 16 | 12 14 15 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) ) |
| 17 | simplll | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 18 | simpllr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → 𝑆 ⊆ 𝑋 ) | |
| 19 | simplrr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → 𝑟 ∈ ℝ+ ) | |
| 20 | xmetsym | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑤 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋 ) → ( 𝑤 𝐷 𝑧 ) = ( 𝑧 𝐷 𝑤 ) ) | |
| 21 | 17 13 11 20 | syl3anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( 𝑤 𝐷 𝑧 ) = ( 𝑧 𝐷 𝑤 ) ) |
| 22 | simprr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( 𝑧 𝐷 𝑤 ) < 𝑟 ) | |
| 23 | 21 22 | eqbrtrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( 𝑤 𝐷 𝑧 ) < 𝑟 ) |
| 24 | 1 2 3 4 17 18 13 11 19 23 | metdscnlem | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) < 𝑟 ) |
| 25 | 1 2 3 4 17 18 11 13 19 22 | metdscnlem | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) |
| 26 | breq1 | ⊢ ( ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) → ( ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) < 𝑟 ↔ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) < 𝑟 ) ) | |
| 27 | breq1 | ⊢ ( ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) = if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) → ( ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ↔ if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) < 𝑟 ) ) | |
| 28 | 26 27 | ifboth | ⊢ ( ( ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) < 𝑟 ∧ ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) → if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) < 𝑟 ) |
| 29 | 24 25 28 | syl2anc | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → if ( ( 𝐹 ‘ 𝑧 ) ≤ ( 𝐹 ‘ 𝑤 ) , ( ( 𝐹 ‘ 𝑤 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑧 ) ) , ( ( 𝐹 ‘ 𝑧 ) +𝑒 -𝑒 ( 𝐹 ‘ 𝑤 ) ) ) < 𝑟 ) |
| 30 | 16 29 | eqbrtrd | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ ( 𝑤 ∈ 𝑋 ∧ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) |
| 31 | 30 | expr | ⊢ ( ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) ∧ 𝑤 ∈ 𝑋 ) → ( ( 𝑧 𝐷 𝑤 ) < 𝑟 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) |
| 32 | 31 | ralrimiva | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑟 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) |
| 33 | breq2 | ⊢ ( 𝑠 = 𝑟 → ( ( 𝑧 𝐷 𝑤 ) < 𝑠 ↔ ( 𝑧 𝐷 𝑤 ) < 𝑟 ) ) | |
| 34 | 33 | rspceaimv | ⊢ ( ( 𝑟 ∈ ℝ+ ∧ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑟 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑠 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) |
| 35 | 9 32 34 | syl2anc | ⊢ ( ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) ∧ ( 𝑧 ∈ 𝑋 ∧ 𝑟 ∈ ℝ+ ) ) → ∃ 𝑠 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑠 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) |
| 36 | 35 | ralrimivva | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ∀ 𝑧 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑠 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) |
| 37 | simpl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 38 | 3 | xrsxmet | ⊢ 𝐶 ∈ ( ∞Met ‘ ℝ* ) |
| 39 | 2 4 | metcn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝐶 ∈ ( ∞Met ‘ ℝ* ) ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ* ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑠 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) ) ) |
| 40 | 37 38 39 | sylancl | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → ( 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ↔ ( 𝐹 : 𝑋 ⟶ ℝ* ∧ ∀ 𝑧 ∈ 𝑋 ∀ 𝑟 ∈ ℝ+ ∃ 𝑠 ∈ ℝ+ ∀ 𝑤 ∈ 𝑋 ( ( 𝑧 𝐷 𝑤 ) < 𝑠 → ( ( 𝐹 ‘ 𝑧 ) 𝐶 ( 𝐹 ‘ 𝑤 ) ) < 𝑟 ) ) ) ) |
| 41 | 8 36 40 | mpbir2and | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |