This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The function F which gives the distance from a point to a nonempty set in a metric space is a continuous function into the topology of the complex numbers. (Contributed by Mario Carneiro, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | ||
| metdscn2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | ||
| Assertion | metdscn2 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | ⊢ 𝐹 = ( 𝑥 ∈ 𝑋 ↦ inf ( ran ( 𝑦 ∈ 𝑆 ↦ ( 𝑥 𝐷 𝑦 ) ) , ℝ* , < ) ) | |
| 2 | metdscn.j | ⊢ 𝐽 = ( MetOpen ‘ 𝐷 ) | |
| 3 | metdscn2.k | ⊢ 𝐾 = ( TopOpen ‘ ℂfld ) | |
| 4 | eqid | ⊢ ( dist ‘ ℝ*𝑠 ) = ( dist ‘ ℝ*𝑠 ) | |
| 5 | 4 | xrsdsre | ⊢ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) = ( ( abs ∘ − ) ↾ ( ℝ × ℝ ) ) |
| 6 | 4 | xrsxmet | ⊢ ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) |
| 7 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 8 | eqid | ⊢ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) = ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) | |
| 9 | eqid | ⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) = ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) | |
| 10 | eqid | ⊢ ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) = ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) | |
| 11 | 8 9 10 | metrest | ⊢ ( ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) ∧ ℝ ⊆ ℝ* ) → ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) = ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) ) |
| 12 | 6 7 11 | mp2an | ⊢ ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) = ( MetOpen ‘ ( ( dist ‘ ℝ*𝑠 ) ↾ ( ℝ × ℝ ) ) ) |
| 13 | 5 12 | tgioo | ⊢ ( topGen ‘ ran (,) ) = ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) |
| 14 | 3 | tgioo2 | ⊢ ( topGen ‘ ran (,) ) = ( 𝐾 ↾t ℝ ) |
| 15 | 13 14 | eqtr3i | ⊢ ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) = ( 𝐾 ↾t ℝ ) |
| 16 | 15 | oveq2i | ⊢ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) = ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) |
| 17 | 3 | cnfldtop | ⊢ 𝐾 ∈ Top |
| 18 | cnrest2r | ⊢ ( 𝐾 ∈ Top → ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( 𝐽 Cn ( 𝐾 ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) |
| 20 | 16 19 | eqsstri | ⊢ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ⊆ ( 𝐽 Cn 𝐾 ) |
| 21 | metxmet | ⊢ ( 𝐷 ∈ ( Met ‘ 𝑋 ) → 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ) | |
| 22 | 1 2 4 9 | metdscn | ⊢ ( ( 𝐷 ∈ ( ∞Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
| 23 | 21 22 | sylan | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ) → 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
| 24 | 23 | 3adant3 | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ) |
| 25 | 1 | metdsre | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 : 𝑋 ⟶ ℝ ) |
| 26 | frn | ⊢ ( 𝐹 : 𝑋 ⟶ ℝ → ran 𝐹 ⊆ ℝ ) | |
| 27 | 9 | mopntopon | ⊢ ( ( dist ‘ ℝ*𝑠 ) ∈ ( ∞Met ‘ ℝ* ) → ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ∈ ( TopOn ‘ ℝ* ) ) |
| 28 | 6 27 | ax-mp | ⊢ ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ∈ ( TopOn ‘ ℝ* ) |
| 29 | cnrest2 | ⊢ ( ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ∈ ( TopOn ‘ ℝ* ) ∧ ran 𝐹 ⊆ ℝ ∧ ℝ ⊆ ℝ* ) → ( 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) ) | |
| 30 | 28 7 29 | mp3an13 | ⊢ ( ran 𝐹 ⊆ ℝ → ( 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) ) |
| 31 | 25 26 30 | 3syl | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → ( 𝐹 ∈ ( 𝐽 Cn ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ) ↔ 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) ) |
| 32 | 24 31 | mpbid | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn ( ( MetOpen ‘ ( dist ‘ ℝ*𝑠 ) ) ↾t ℝ ) ) ) |
| 33 | 20 32 | sselid | ⊢ ( ( 𝐷 ∈ ( Met ‘ 𝑋 ) ∧ 𝑆 ⊆ 𝑋 ∧ 𝑆 ≠ ∅ ) → 𝐹 ∈ ( 𝐽 Cn 𝐾 ) ) |