This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by AV, 15-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcomf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| lcomf.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | ||
| lcomf.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | ||
| lcomf.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | ||
| lcomf.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | ||
| lcomf.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) | ||
| lcomf.h | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) | ||
| lcomf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | ||
| lcomfsupp.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | ||
| lcomfsupp.y | ⊢ 𝑌 = ( 0g ‘ 𝐹 ) | ||
| lcomfsupp.j | ⊢ ( 𝜑 → 𝐺 finSupp 𝑌 ) | ||
| Assertion | lcomfsupp | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) finSupp 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomf.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 2 | lcomf.k | ⊢ 𝐾 = ( Base ‘ 𝐹 ) | |
| 3 | lcomf.s | ⊢ · = ( ·𝑠 ‘ 𝑊 ) | |
| 4 | lcomf.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 5 | lcomf.w | ⊢ ( 𝜑 → 𝑊 ∈ LMod ) | |
| 6 | lcomf.g | ⊢ ( 𝜑 → 𝐺 : 𝐼 ⟶ 𝐾 ) | |
| 7 | lcomf.h | ⊢ ( 𝜑 → 𝐻 : 𝐼 ⟶ 𝐵 ) | |
| 8 | lcomf.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) | |
| 9 | lcomfsupp.z | ⊢ 0 = ( 0g ‘ 𝑊 ) | |
| 10 | lcomfsupp.y | ⊢ 𝑌 = ( 0g ‘ 𝐹 ) | |
| 11 | lcomfsupp.j | ⊢ ( 𝜑 → 𝐺 finSupp 𝑌 ) | |
| 12 | 11 | fsuppimpd | ⊢ ( 𝜑 → ( 𝐺 supp 𝑌 ) ∈ Fin ) |
| 13 | 1 2 3 4 5 6 7 8 | lcomf | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) : 𝐼 ⟶ 𝐵 ) |
| 14 | eldifi | ⊢ ( 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) → 𝑥 ∈ 𝐼 ) | |
| 15 | 6 | ffnd | ⊢ ( 𝜑 → 𝐺 Fn 𝐼 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐺 Fn 𝐼 ) |
| 17 | 7 | ffnd | ⊢ ( 𝜑 → 𝐻 Fn 𝐼 ) |
| 18 | 17 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐻 Fn 𝐼 ) |
| 19 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝐼 ∈ 𝑉 ) |
| 20 | simpr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → 𝑥 ∈ 𝐼 ) | |
| 21 | fnfvof | ⊢ ( ( ( 𝐺 Fn 𝐼 ∧ 𝐻 Fn 𝐼 ) ∧ ( 𝐼 ∈ 𝑉 ∧ 𝑥 ∈ 𝐼 ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) | |
| 22 | 16 18 19 20 21 | syl22anc | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
| 23 | 14 22 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) ) |
| 24 | ssidd | ⊢ ( 𝜑 → ( 𝐺 supp 𝑌 ) ⊆ ( 𝐺 supp 𝑌 ) ) | |
| 25 | 10 | fvexi | ⊢ 𝑌 ∈ V |
| 26 | 25 | a1i | ⊢ ( 𝜑 → 𝑌 ∈ V ) |
| 27 | 6 24 8 26 | suppssr | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝐺 ‘ 𝑥 ) = 𝑌 ) |
| 28 | 27 | oveq1d | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ‘ 𝑥 ) · ( 𝐻 ‘ 𝑥 ) ) = ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) ) |
| 29 | 7 | ffvelcdmda | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) |
| 30 | 4 1 3 10 9 | lmod0vs | ⊢ ( ( 𝑊 ∈ LMod ∧ ( 𝐻 ‘ 𝑥 ) ∈ 𝐵 ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 31 | 5 29 30 | syl2an2r | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐼 ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 32 | 14 31 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( 𝑌 · ( 𝐻 ‘ 𝑥 ) ) = 0 ) |
| 33 | 23 28 32 | 3eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( 𝐼 ∖ ( 𝐺 supp 𝑌 ) ) ) → ( ( 𝐺 ∘f · 𝐻 ) ‘ 𝑥 ) = 0 ) |
| 34 | 13 33 | suppss | ⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ⊆ ( 𝐺 supp 𝑌 ) ) |
| 35 | 12 34 | ssfid | ⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) |
| 36 | 15 17 8 8 | offun | ⊢ ( 𝜑 → Fun ( 𝐺 ∘f · 𝐻 ) ) |
| 37 | ovexd | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) ∈ V ) | |
| 38 | 9 | fvexi | ⊢ 0 ∈ V |
| 39 | 38 | a1i | ⊢ ( 𝜑 → 0 ∈ V ) |
| 40 | funisfsupp | ⊢ ( ( Fun ( 𝐺 ∘f · 𝐻 ) ∧ ( 𝐺 ∘f · 𝐻 ) ∈ V ∧ 0 ∈ V ) → ( ( 𝐺 ∘f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) ) | |
| 41 | 36 37 39 40 | syl3anc | ⊢ ( 𝜑 → ( ( 𝐺 ∘f · 𝐻 ) finSupp 0 ↔ ( ( 𝐺 ∘f · 𝐻 ) supp 0 ) ∈ Fin ) ) |
| 42 | 35 41 | mpbird | ⊢ ( 𝜑 → ( 𝐺 ∘f · 𝐻 ) finSupp 0 ) |