This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A linear-combination sum is finitely supported if the coefficients are. (Contributed by Stefan O'Rear, 28-Feb-2015) (Revised by AV, 15-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lcomf.f | |- F = ( Scalar ` W ) |
|
| lcomf.k | |- K = ( Base ` F ) |
||
| lcomf.s | |- .x. = ( .s ` W ) |
||
| lcomf.b | |- B = ( Base ` W ) |
||
| lcomf.w | |- ( ph -> W e. LMod ) |
||
| lcomf.g | |- ( ph -> G : I --> K ) |
||
| lcomf.h | |- ( ph -> H : I --> B ) |
||
| lcomf.i | |- ( ph -> I e. V ) |
||
| lcomfsupp.z | |- .0. = ( 0g ` W ) |
||
| lcomfsupp.y | |- Y = ( 0g ` F ) |
||
| lcomfsupp.j | |- ( ph -> G finSupp Y ) |
||
| Assertion | lcomfsupp | |- ( ph -> ( G oF .x. H ) finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lcomf.f | |- F = ( Scalar ` W ) |
|
| 2 | lcomf.k | |- K = ( Base ` F ) |
|
| 3 | lcomf.s | |- .x. = ( .s ` W ) |
|
| 4 | lcomf.b | |- B = ( Base ` W ) |
|
| 5 | lcomf.w | |- ( ph -> W e. LMod ) |
|
| 6 | lcomf.g | |- ( ph -> G : I --> K ) |
|
| 7 | lcomf.h | |- ( ph -> H : I --> B ) |
|
| 8 | lcomf.i | |- ( ph -> I e. V ) |
|
| 9 | lcomfsupp.z | |- .0. = ( 0g ` W ) |
|
| 10 | lcomfsupp.y | |- Y = ( 0g ` F ) |
|
| 11 | lcomfsupp.j | |- ( ph -> G finSupp Y ) |
|
| 12 | 11 | fsuppimpd | |- ( ph -> ( G supp Y ) e. Fin ) |
| 13 | 1 2 3 4 5 6 7 8 | lcomf | |- ( ph -> ( G oF .x. H ) : I --> B ) |
| 14 | eldifi | |- ( x e. ( I \ ( G supp Y ) ) -> x e. I ) |
|
| 15 | 6 | ffnd | |- ( ph -> G Fn I ) |
| 16 | 15 | adantr | |- ( ( ph /\ x e. I ) -> G Fn I ) |
| 17 | 7 | ffnd | |- ( ph -> H Fn I ) |
| 18 | 17 | adantr | |- ( ( ph /\ x e. I ) -> H Fn I ) |
| 19 | 8 | adantr | |- ( ( ph /\ x e. I ) -> I e. V ) |
| 20 | simpr | |- ( ( ph /\ x e. I ) -> x e. I ) |
|
| 21 | fnfvof | |- ( ( ( G Fn I /\ H Fn I ) /\ ( I e. V /\ x e. I ) ) -> ( ( G oF .x. H ) ` x ) = ( ( G ` x ) .x. ( H ` x ) ) ) |
|
| 22 | 16 18 19 20 21 | syl22anc | |- ( ( ph /\ x e. I ) -> ( ( G oF .x. H ) ` x ) = ( ( G ` x ) .x. ( H ` x ) ) ) |
| 23 | 14 22 | sylan2 | |- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( ( G oF .x. H ) ` x ) = ( ( G ` x ) .x. ( H ` x ) ) ) |
| 24 | ssidd | |- ( ph -> ( G supp Y ) C_ ( G supp Y ) ) |
|
| 25 | 10 | fvexi | |- Y e. _V |
| 26 | 25 | a1i | |- ( ph -> Y e. _V ) |
| 27 | 6 24 8 26 | suppssr | |- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( G ` x ) = Y ) |
| 28 | 27 | oveq1d | |- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( ( G ` x ) .x. ( H ` x ) ) = ( Y .x. ( H ` x ) ) ) |
| 29 | 7 | ffvelcdmda | |- ( ( ph /\ x e. I ) -> ( H ` x ) e. B ) |
| 30 | 4 1 3 10 9 | lmod0vs | |- ( ( W e. LMod /\ ( H ` x ) e. B ) -> ( Y .x. ( H ` x ) ) = .0. ) |
| 31 | 5 29 30 | syl2an2r | |- ( ( ph /\ x e. I ) -> ( Y .x. ( H ` x ) ) = .0. ) |
| 32 | 14 31 | sylan2 | |- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( Y .x. ( H ` x ) ) = .0. ) |
| 33 | 23 28 32 | 3eqtrd | |- ( ( ph /\ x e. ( I \ ( G supp Y ) ) ) -> ( ( G oF .x. H ) ` x ) = .0. ) |
| 34 | 13 33 | suppss | |- ( ph -> ( ( G oF .x. H ) supp .0. ) C_ ( G supp Y ) ) |
| 35 | 12 34 | ssfid | |- ( ph -> ( ( G oF .x. H ) supp .0. ) e. Fin ) |
| 36 | 15 17 8 8 | offun | |- ( ph -> Fun ( G oF .x. H ) ) |
| 37 | ovexd | |- ( ph -> ( G oF .x. H ) e. _V ) |
|
| 38 | 9 | fvexi | |- .0. e. _V |
| 39 | 38 | a1i | |- ( ph -> .0. e. _V ) |
| 40 | funisfsupp | |- ( ( Fun ( G oF .x. H ) /\ ( G oF .x. H ) e. _V /\ .0. e. _V ) -> ( ( G oF .x. H ) finSupp .0. <-> ( ( G oF .x. H ) supp .0. ) e. Fin ) ) |
|
| 41 | 36 37 39 40 | syl3anc | |- ( ph -> ( ( G oF .x. H ) finSupp .0. <-> ( ( G oF .x. H ) supp .0. ) e. Fin ) ) |
| 42 | 35 41 | mpbird | |- ( ph -> ( G oF .x. H ) finSupp .0. ) |