This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsacsbs.1 | ⊢ 𝐴 = ( LSubSp ‘ 𝑊 ) | |
| lbsacsbs.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | ||
| lbsacsbs.3 | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | ||
| lbsacsbs.4 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| lbsacsbs.5 | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | ||
| Assertion | lbsacsbs | ⊢ ( 𝑊 ∈ LVec → ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ 𝐼 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsacsbs.1 | ⊢ 𝐴 = ( LSubSp ‘ 𝑊 ) | |
| 2 | lbsacsbs.2 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 3 | lbsacsbs.3 | ⊢ 𝑋 = ( Base ‘ 𝑊 ) | |
| 4 | lbsacsbs.4 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 5 | lbsacsbs.5 | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 6 | eqid | ⊢ ( LSpan ‘ 𝑊 ) = ( LSpan ‘ 𝑊 ) | |
| 7 | 3 5 6 | islbs2 | ⊢ ( 𝑊 ∈ LVec → ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ⊆ 𝑋 ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝑆 ) = 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 8 | lveclmod | ⊢ ( 𝑊 ∈ LVec → 𝑊 ∈ LMod ) | |
| 9 | 1 6 2 | mrclsp | ⊢ ( 𝑊 ∈ LMod → ( LSpan ‘ 𝑊 ) = 𝑁 ) |
| 10 | 8 9 | syl | ⊢ ( 𝑊 ∈ LVec → ( LSpan ‘ 𝑊 ) = 𝑁 ) |
| 11 | 10 | fveq1d | ⊢ ( 𝑊 ∈ LVec → ( ( LSpan ‘ 𝑊 ) ‘ 𝑆 ) = ( 𝑁 ‘ 𝑆 ) ) |
| 12 | 11 | eqeq1d | ⊢ ( 𝑊 ∈ LVec → ( ( ( LSpan ‘ 𝑊 ) ‘ 𝑆 ) = 𝑋 ↔ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ) |
| 13 | 10 | fveq1d | ⊢ ( 𝑊 ∈ LVec → ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 14 | 13 | eleq2d | ⊢ ( 𝑊 ∈ LVec → ( 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 15 | 14 | notbid | ⊢ ( 𝑊 ∈ LVec → ( ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 16 | 15 | ralbidv | ⊢ ( 𝑊 ∈ LVec → ( ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 17 | 12 16 | 3anbi23d | ⊢ ( 𝑊 ∈ LVec → ( ( 𝑆 ⊆ 𝑋 ∧ ( ( LSpan ‘ 𝑊 ) ‘ 𝑆 ) = 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( ( LSpan ‘ 𝑊 ) ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 18 | 3anan32 | ⊢ ( ( 𝑆 ⊆ 𝑋 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ↔ ( ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ) | |
| 19 | 3 1 | lssmre | ⊢ ( 𝑊 ∈ LMod → 𝐴 ∈ ( Moore ‘ 𝑋 ) ) |
| 20 | 2 4 | ismri | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 21 | 8 19 20 | 3syl | ⊢ ( 𝑊 ∈ LVec → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 22 | 21 | anbi1d | ⊢ ( 𝑊 ∈ LVec → ( ( 𝑆 ∈ 𝐼 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ↔ ( ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ) ) |
| 23 | 18 22 | bitr4id | ⊢ ( 𝑊 ∈ LVec → ( ( 𝑆 ⊆ 𝑋 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ↔ ( 𝑆 ∈ 𝐼 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ) ) |
| 24 | 7 17 23 | 3bitrd | ⊢ ( 𝑊 ∈ LVec → ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ 𝐼 ∧ ( 𝑁 ‘ 𝑆 ) = 𝑋 ) ) ) |