This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Being a basis in a vector space is equivalent to being a basis in the associated algebraic closure system. Equivalent to islbs2 . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lbsacsbs.1 | |- A = ( LSubSp ` W ) |
|
| lbsacsbs.2 | |- N = ( mrCls ` A ) |
||
| lbsacsbs.3 | |- X = ( Base ` W ) |
||
| lbsacsbs.4 | |- I = ( mrInd ` A ) |
||
| lbsacsbs.5 | |- J = ( LBasis ` W ) |
||
| Assertion | lbsacsbs | |- ( W e. LVec -> ( S e. J <-> ( S e. I /\ ( N ` S ) = X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbsacsbs.1 | |- A = ( LSubSp ` W ) |
|
| 2 | lbsacsbs.2 | |- N = ( mrCls ` A ) |
|
| 3 | lbsacsbs.3 | |- X = ( Base ` W ) |
|
| 4 | lbsacsbs.4 | |- I = ( mrInd ` A ) |
|
| 5 | lbsacsbs.5 | |- J = ( LBasis ` W ) |
|
| 6 | eqid | |- ( LSpan ` W ) = ( LSpan ` W ) |
|
| 7 | 3 5 6 | islbs2 | |- ( W e. LVec -> ( S e. J <-> ( S C_ X /\ ( ( LSpan ` W ) ` S ) = X /\ A. x e. S -. x e. ( ( LSpan ` W ) ` ( S \ { x } ) ) ) ) ) |
| 8 | lveclmod | |- ( W e. LVec -> W e. LMod ) |
|
| 9 | 1 6 2 | mrclsp | |- ( W e. LMod -> ( LSpan ` W ) = N ) |
| 10 | 8 9 | syl | |- ( W e. LVec -> ( LSpan ` W ) = N ) |
| 11 | 10 | fveq1d | |- ( W e. LVec -> ( ( LSpan ` W ) ` S ) = ( N ` S ) ) |
| 12 | 11 | eqeq1d | |- ( W e. LVec -> ( ( ( LSpan ` W ) ` S ) = X <-> ( N ` S ) = X ) ) |
| 13 | 10 | fveq1d | |- ( W e. LVec -> ( ( LSpan ` W ) ` ( S \ { x } ) ) = ( N ` ( S \ { x } ) ) ) |
| 14 | 13 | eleq2d | |- ( W e. LVec -> ( x e. ( ( LSpan ` W ) ` ( S \ { x } ) ) <-> x e. ( N ` ( S \ { x } ) ) ) ) |
| 15 | 14 | notbid | |- ( W e. LVec -> ( -. x e. ( ( LSpan ` W ) ` ( S \ { x } ) ) <-> -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 16 | 15 | ralbidv | |- ( W e. LVec -> ( A. x e. S -. x e. ( ( LSpan ` W ) ` ( S \ { x } ) ) <-> A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) |
| 17 | 12 16 | 3anbi23d | |- ( W e. LVec -> ( ( S C_ X /\ ( ( LSpan ` W ) ` S ) = X /\ A. x e. S -. x e. ( ( LSpan ` W ) ` ( S \ { x } ) ) ) <-> ( S C_ X /\ ( N ` S ) = X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |
| 18 | 3anan32 | |- ( ( S C_ X /\ ( N ` S ) = X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) <-> ( ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) /\ ( N ` S ) = X ) ) |
|
| 19 | 3 1 | lssmre | |- ( W e. LMod -> A e. ( Moore ` X ) ) |
| 20 | 2 4 | ismri | |- ( A e. ( Moore ` X ) -> ( S e. I <-> ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |
| 21 | 8 19 20 | 3syl | |- ( W e. LVec -> ( S e. I <-> ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) ) ) |
| 22 | 21 | anbi1d | |- ( W e. LVec -> ( ( S e. I /\ ( N ` S ) = X ) <-> ( ( S C_ X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) /\ ( N ` S ) = X ) ) ) |
| 23 | 18 22 | bitr4id | |- ( W e. LVec -> ( ( S C_ X /\ ( N ` S ) = X /\ A. x e. S -. x e. ( N ` ( S \ { x } ) ) ) <-> ( S e. I /\ ( N ` S ) = X ) ) ) |
| 24 | 7 17 23 | 3bitrd | |- ( W e. LVec -> ( S e. J <-> ( S e. I /\ ( N ` S ) = X ) ) ) |