This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Moore closure generalizes module span. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mrclsp.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑊 ) | |
| mrclsp.k | ⊢ 𝐾 = ( LSpan ‘ 𝑊 ) | ||
| mrclsp.f | ⊢ 𝐹 = ( mrCls ‘ 𝑈 ) | ||
| Assertion | mrclsp | ⊢ ( 𝑊 ∈ LMod → 𝐾 = 𝐹 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mrclsp.u | ⊢ 𝑈 = ( LSubSp ‘ 𝑊 ) | |
| 2 | mrclsp.k | ⊢ 𝐾 = ( LSpan ‘ 𝑊 ) | |
| 3 | mrclsp.f | ⊢ 𝐹 = ( mrCls ‘ 𝑈 ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 5 | 4 1 2 | lspfval | ⊢ ( 𝑊 ∈ LMod → 𝐾 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ ∩ { 𝑏 ∈ 𝑈 ∣ 𝑎 ⊆ 𝑏 } ) ) |
| 6 | 4 1 | lssmre | ⊢ ( 𝑊 ∈ LMod → 𝑈 ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) ) |
| 7 | 3 | mrcfval | ⊢ ( 𝑈 ∈ ( Moore ‘ ( Base ‘ 𝑊 ) ) → 𝐹 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ ∩ { 𝑏 ∈ 𝑈 ∣ 𝑎 ⊆ 𝑏 } ) ) |
| 8 | 6 7 | syl | ⊢ ( 𝑊 ∈ LMod → 𝐹 = ( 𝑎 ∈ 𝒫 ( Base ‘ 𝑊 ) ↦ ∩ { 𝑏 ∈ 𝑈 ∣ 𝑎 ⊆ 𝑏 } ) ) |
| 9 | 5 8 | eqtr4d | ⊢ ( 𝑊 ∈ LMod → 𝐾 = 𝐹 ) |