This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Criterion for a set to be an independent set of a Moore system. (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ismri.1 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| ismri.2 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | ||
| Assertion | ismri | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ismri.1 | ⊢ 𝑁 = ( mrCls ‘ 𝐴 ) | |
| 2 | ismri.2 | ⊢ 𝐼 = ( mrInd ‘ 𝐴 ) | |
| 3 | 1 2 | mrisval | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝐼 = { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) |
| 4 | 3 | eleq2d | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ 𝑆 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ) ) |
| 5 | difeq1 | ⊢ ( 𝑠 = 𝑆 → ( 𝑠 ∖ { 𝑥 } ) = ( 𝑆 ∖ { 𝑥 } ) ) | |
| 6 | 5 | fveq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) = ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) |
| 7 | 6 | eleq2d | ⊢ ( 𝑠 = 𝑆 → ( 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 8 | 7 | notbid | ⊢ ( 𝑠 = 𝑆 → ( ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 9 | 8 | raleqbi1dv | ⊢ ( 𝑠 = 𝑆 → ( ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) ↔ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 10 | 9 | elrab | ⊢ ( 𝑆 ∈ { 𝑠 ∈ 𝒫 𝑋 ∣ ∀ 𝑥 ∈ 𝑠 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑠 ∖ { 𝑥 } ) ) } ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) |
| 11 | 4 10 | bitrdi | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 12 | elfvex | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → 𝑋 ∈ V ) | |
| 13 | elpw2g | ⊢ ( 𝑋 ∈ V → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝒫 𝑋 ↔ 𝑆 ⊆ 𝑋 ) ) |
| 15 | 14 | anbi1d | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( ( 𝑆 ∈ 𝒫 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |
| 16 | 11 15 | bitrd | ⊢ ( 𝐴 ∈ ( Moore ‘ 𝑋 ) → ( 𝑆 ∈ 𝐼 ↔ ( 𝑆 ⊆ 𝑋 ∧ ∀ 𝑥 ∈ 𝑆 ¬ 𝑥 ∈ ( 𝑁 ‘ ( 𝑆 ∖ { 𝑥 } ) ) ) ) ) |