This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The dimension theorem for vector spaces: any two bases of the same vector space are equinumerous. Proven by using lssacsex and lbsacsbs to show that being a basis for a vector space is equivalent to being a basis for the associated algebraic closure system, and then using acsexdimd . (Contributed by David Moews, 1-May-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lvecdim.1 | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| Assertion | lvecdim | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ≈ 𝑇 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lvecdim.1 | ⊢ 𝐽 = ( LBasis ‘ 𝑊 ) | |
| 2 | eqid | ⊢ ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 ) | |
| 3 | eqid | ⊢ ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) = ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 5 | 2 3 4 | lssacsex | ⊢ ( 𝑊 ∈ LVec → ( ( LSubSp ‘ 𝑊 ) ∈ ( ACS ‘ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑦 } ) ) ∖ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦 ∈ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑧 } ) ) ) ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( ( LSubSp ‘ 𝑊 ) ∈ ( ACS ‘ ( Base ‘ 𝑊 ) ) ∧ ∀ 𝑥 ∈ 𝒫 ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑦 } ) ) ∖ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦 ∈ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑧 } ) ) ) ) |
| 7 | 6 | simpld | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( LSubSp ‘ 𝑊 ) ∈ ( ACS ‘ ( Base ‘ 𝑊 ) ) ) |
| 8 | eqid | ⊢ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) = ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) | |
| 9 | 6 | simprd | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ∀ 𝑥 ∈ 𝒫 ( Base ‘ 𝑊 ) ∀ 𝑦 ∈ ( Base ‘ 𝑊 ) ∀ 𝑧 ∈ ( ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑦 } ) ) ∖ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑥 ) ) 𝑦 ∈ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ ( 𝑥 ∪ { 𝑧 } ) ) ) |
| 10 | simp2 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ∈ 𝐽 ) | |
| 11 | 2 3 4 8 1 | lbsacsbs | ⊢ ( 𝑊 ∈ LVec → ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) ) ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( 𝑆 ∈ 𝐽 ↔ ( 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) ) ) |
| 13 | 10 12 | mpbid | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) ) |
| 14 | 13 | simpld | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ) |
| 15 | simp3 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ 𝐽 ) | |
| 16 | 2 3 4 8 1 | lbsacsbs | ⊢ ( 𝑊 ∈ LVec → ( 𝑇 ∈ 𝐽 ↔ ( 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) ) ) |
| 17 | 16 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( 𝑇 ∈ 𝐽 ↔ ( 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) ) ) |
| 18 | 15 17 | mpbid | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ∧ ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) ) |
| 19 | 18 | simpld | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → 𝑇 ∈ ( mrInd ‘ ( LSubSp ‘ 𝑊 ) ) ) |
| 20 | 13 | simprd | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( Base ‘ 𝑊 ) ) |
| 21 | 18 | simprd | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) = ( Base ‘ 𝑊 ) ) |
| 22 | 20 21 | eqtr4d | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑆 ) = ( ( mrCls ‘ ( LSubSp ‘ 𝑊 ) ) ‘ 𝑇 ) ) |
| 23 | 7 3 8 9 14 19 22 | acsexdimd | ⊢ ( ( 𝑊 ∈ LVec ∧ 𝑆 ∈ 𝐽 ∧ 𝑇 ∈ 𝐽 ) → 𝑆 ≈ 𝑇 ) |