This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspaces of a module comprise a Moore system on the vectors of the module. (Contributed by Stefan O'Rear, 31-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lssacs.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| lssacs.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | lssmre | ⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ ( Moore ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lssacs.b | ⊢ 𝐵 = ( Base ‘ 𝑊 ) | |
| 2 | lssacs.s | ⊢ 𝑆 = ( LSubSp ‘ 𝑊 ) | |
| 3 | 1 2 | lssss | ⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ⊆ 𝐵 ) |
| 4 | velpw | ⊢ ( 𝑎 ∈ 𝒫 𝐵 ↔ 𝑎 ⊆ 𝐵 ) | |
| 5 | 3 4 | sylibr | ⊢ ( 𝑎 ∈ 𝑆 → 𝑎 ∈ 𝒫 𝐵 ) |
| 6 | 5 | a1i | ⊢ ( 𝑊 ∈ LMod → ( 𝑎 ∈ 𝑆 → 𝑎 ∈ 𝒫 𝐵 ) ) |
| 7 | 6 | ssrdv | ⊢ ( 𝑊 ∈ LMod → 𝑆 ⊆ 𝒫 𝐵 ) |
| 8 | 1 2 | lss1 | ⊢ ( 𝑊 ∈ LMod → 𝐵 ∈ 𝑆 ) |
| 9 | 2 | lssintcl | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝑎 ⊆ 𝑆 ∧ 𝑎 ≠ ∅ ) → ∩ 𝑎 ∈ 𝑆 ) |
| 10 | 7 8 9 | ismred | ⊢ ( 𝑊 ∈ LMod → 𝑆 ∈ ( Moore ‘ 𝐵 ) ) |