This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for 5-quantifier AC of Kurt Maes, Th. 4, part of 3 => 4. (Contributed by NM, 25-Mar-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | kmlem2 | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ineq2 | ⊢ ( 𝑦 = 𝑣 → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ 𝑣 ) ) | |
| 2 | 1 | eleq2d | ⊢ ( 𝑦 = 𝑣 → ( 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ) |
| 3 | 2 | eubidv | ⊢ ( 𝑦 = 𝑣 → ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ) |
| 4 | 3 | imbi2d | ⊢ ( 𝑦 = 𝑣 → ( ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ) ) |
| 5 | 4 | ralbidv | ⊢ ( 𝑦 = 𝑣 → ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ) ) |
| 6 | 5 | cbvexvw | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑣 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ) |
| 7 | indi | ⊢ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) = ( ( 𝑧 ∩ 𝑣 ) ∪ ( 𝑧 ∩ { 𝑢 } ) ) | |
| 8 | elssuni | ⊢ ( 𝑧 ∈ 𝑥 → 𝑧 ⊆ ∪ 𝑥 ) | |
| 9 | 8 | ssneld | ⊢ ( 𝑧 ∈ 𝑥 → ( ¬ 𝑢 ∈ ∪ 𝑥 → ¬ 𝑢 ∈ 𝑧 ) ) |
| 10 | disjsn | ⊢ ( ( 𝑧 ∩ { 𝑢 } ) = ∅ ↔ ¬ 𝑢 ∈ 𝑧 ) | |
| 11 | 9 10 | imbitrrdi | ⊢ ( 𝑧 ∈ 𝑥 → ( ¬ 𝑢 ∈ ∪ 𝑥 → ( 𝑧 ∩ { 𝑢 } ) = ∅ ) ) |
| 12 | 11 | impcom | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑧 ∩ { 𝑢 } ) = ∅ ) |
| 13 | 12 | uneq2d | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( ( 𝑧 ∩ 𝑣 ) ∪ ( 𝑧 ∩ { 𝑢 } ) ) = ( ( 𝑧 ∩ 𝑣 ) ∪ ∅ ) ) |
| 14 | un0 | ⊢ ( ( 𝑧 ∩ 𝑣 ) ∪ ∅ ) = ( 𝑧 ∩ 𝑣 ) | |
| 15 | 13 14 | eqtrdi | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( ( 𝑧 ∩ 𝑣 ) ∪ ( 𝑧 ∩ { 𝑢 } ) ) = ( 𝑧 ∩ 𝑣 ) ) |
| 16 | 7 15 | eqtr2id | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑧 ∩ 𝑣 ) = ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) |
| 17 | 16 | eleq2d | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ↔ 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) |
| 18 | 17 | eubidv | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ↔ ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) |
| 19 | 18 | imbi2d | ⊢ ( ( ¬ 𝑢 ∈ ∪ 𝑥 ∧ 𝑧 ∈ 𝑥 ) → ( ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ↔ ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) |
| 20 | 19 | ralbidva | ⊢ ( ¬ 𝑢 ∈ ∪ 𝑥 → ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) |
| 21 | vsnid | ⊢ 𝑢 ∈ { 𝑢 } | |
| 22 | 21 | olci | ⊢ ( 𝑢 ∈ 𝑣 ∨ 𝑢 ∈ { 𝑢 } ) |
| 23 | elun | ⊢ ( 𝑢 ∈ ( 𝑣 ∪ { 𝑢 } ) ↔ ( 𝑢 ∈ 𝑣 ∨ 𝑢 ∈ { 𝑢 } ) ) | |
| 24 | 22 23 | mpbir | ⊢ 𝑢 ∈ ( 𝑣 ∪ { 𝑢 } ) |
| 25 | elssuni | ⊢ ( ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 → ( 𝑣 ∪ { 𝑢 } ) ⊆ ∪ 𝑥 ) | |
| 26 | 25 | sseld | ⊢ ( ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 → ( 𝑢 ∈ ( 𝑣 ∪ { 𝑢 } ) → 𝑢 ∈ ∪ 𝑥 ) ) |
| 27 | 24 26 | mpi | ⊢ ( ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 → 𝑢 ∈ ∪ 𝑥 ) |
| 28 | 27 | con3i | ⊢ ( ¬ 𝑢 ∈ ∪ 𝑥 → ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ) |
| 29 | 28 | biantrurd | ⊢ ( ¬ 𝑢 ∈ ∪ 𝑥 → ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ↔ ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) ) |
| 30 | 20 29 | bitrd | ⊢ ( ¬ 𝑢 ∈ ∪ 𝑥 → ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) ↔ ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) ) |
| 31 | vex | ⊢ 𝑣 ∈ V | |
| 32 | vsnex | ⊢ { 𝑢 } ∈ V | |
| 33 | 31 32 | unex | ⊢ ( 𝑣 ∪ { 𝑢 } ) ∈ V |
| 34 | eleq1 | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( 𝑦 ∈ 𝑥 ↔ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ) ) | |
| 35 | 34 | notbid | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ¬ 𝑦 ∈ 𝑥 ↔ ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ) ) |
| 36 | ineq2 | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( 𝑧 ∩ 𝑦 ) = ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) | |
| 37 | 36 | eleq2d | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) |
| 38 | 37 | eubidv | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ↔ ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) |
| 39 | 38 | imbi2d | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) |
| 40 | 39 | ralbidv | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) |
| 41 | 35 40 | anbi12d | ⊢ ( 𝑦 = ( 𝑣 ∪ { 𝑢 } ) → ( ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ↔ ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) ) ) |
| 42 | 33 41 | spcev | ⊢ ( ( ¬ ( 𝑣 ∪ { 𝑢 } ) ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ ( 𝑣 ∪ { 𝑢 } ) ) ) ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 43 | 30 42 | biimtrdi | ⊢ ( ¬ 𝑢 ∈ ∪ 𝑥 → ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) ) |
| 44 | vuniex | ⊢ ∪ 𝑥 ∈ V | |
| 45 | eleq2 | ⊢ ( 𝑦 = ∪ 𝑥 → ( 𝑢 ∈ 𝑦 ↔ 𝑢 ∈ ∪ 𝑥 ) ) | |
| 46 | 45 | notbid | ⊢ ( 𝑦 = ∪ 𝑥 → ( ¬ 𝑢 ∈ 𝑦 ↔ ¬ 𝑢 ∈ ∪ 𝑥 ) ) |
| 47 | 46 | exbidv | ⊢ ( 𝑦 = ∪ 𝑥 → ( ∃ 𝑢 ¬ 𝑢 ∈ 𝑦 ↔ ∃ 𝑢 ¬ 𝑢 ∈ ∪ 𝑥 ) ) |
| 48 | nalset | ⊢ ¬ ∃ 𝑦 ∀ 𝑢 𝑢 ∈ 𝑦 | |
| 49 | alexn | ⊢ ( ∀ 𝑦 ∃ 𝑢 ¬ 𝑢 ∈ 𝑦 ↔ ¬ ∃ 𝑦 ∀ 𝑢 𝑢 ∈ 𝑦 ) | |
| 50 | 48 49 | mpbir | ⊢ ∀ 𝑦 ∃ 𝑢 ¬ 𝑢 ∈ 𝑦 |
| 51 | 50 | spi | ⊢ ∃ 𝑢 ¬ 𝑢 ∈ 𝑦 |
| 52 | 44 47 51 | vtocl | ⊢ ∃ 𝑢 ¬ 𝑢 ∈ ∪ 𝑥 |
| 53 | 43 52 | exlimiiv | ⊢ ( ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 54 | 53 | exlimiv | ⊢ ( ∃ 𝑣 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑣 ) ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 55 | 6 54 | sylbi | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) → ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |
| 56 | exsimpr | ⊢ ( ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) → ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) | |
| 57 | 55 56 | impbii | ⊢ ( ∃ 𝑦 ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ↔ ∃ 𝑦 ( ¬ 𝑦 ∈ 𝑥 ∧ ∀ 𝑧 ∈ 𝑥 ( 𝜑 → ∃! 𝑤 𝑤 ∈ ( 𝑧 ∩ 𝑦 ) ) ) ) |