This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: No set contains all sets. Theorem 41 of Suppes p. 30. (Contributed by NM, 23-Aug-1993) Remove use of ax-12 and ax-13 . (Revised by BJ, 31-May-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nalset | ⊢ ¬ ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | alexn | ⊢ ( ∀ 𝑥 ∃ 𝑦 ¬ 𝑦 ∈ 𝑥 ↔ ¬ ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 ) | |
| 2 | ax-sep | ⊢ ∃ 𝑦 ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) | |
| 3 | elequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑦 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 4 | elequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑥 ↔ 𝑦 ∈ 𝑥 ) ) | |
| 5 | elequ1 | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑧 ) ) | |
| 6 | elequ2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑦 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦 ) ) | |
| 7 | 5 6 | bitrd | ⊢ ( 𝑧 = 𝑦 → ( 𝑧 ∈ 𝑧 ↔ 𝑦 ∈ 𝑦 ) ) |
| 8 | 7 | notbid | ⊢ ( 𝑧 = 𝑦 → ( ¬ 𝑧 ∈ 𝑧 ↔ ¬ 𝑦 ∈ 𝑦 ) ) |
| 9 | 4 8 | anbi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) ) |
| 10 | 3 9 | bibi12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) ↔ ( 𝑦 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) ) ) |
| 11 | 10 | spvv | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) → ( 𝑦 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) ) |
| 12 | pclem6 | ⊢ ( ( 𝑦 ∈ 𝑦 ↔ ( 𝑦 ∈ 𝑥 ∧ ¬ 𝑦 ∈ 𝑦 ) ) → ¬ 𝑦 ∈ 𝑥 ) | |
| 13 | 11 12 | syl | ⊢ ( ∀ 𝑧 ( 𝑧 ∈ 𝑦 ↔ ( 𝑧 ∈ 𝑥 ∧ ¬ 𝑧 ∈ 𝑧 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
| 14 | 2 13 | eximii | ⊢ ∃ 𝑦 ¬ 𝑦 ∈ 𝑥 |
| 15 | 1 14 | mpgbi | ⊢ ¬ ∃ 𝑥 ∀ 𝑦 𝑦 ∈ 𝑥 |