This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Two source points map to the same destination point under a group homomorphism iff their difference belongs to the kernel. (Contributed by Stefan O'Rear, 31-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ghmeqker.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| ghmeqker.z | ⊢ 0 = ( 0g ‘ 𝑇 ) | ||
| ghmeqker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | ||
| ghmeqker.m | ⊢ − = ( -g ‘ 𝑆 ) | ||
| Assertion | ghmeqker | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ↔ ( 𝑈 − 𝑉 ) ∈ 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ghmeqker.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 2 | ghmeqker.z | ⊢ 0 = ( 0g ‘ 𝑇 ) | |
| 3 | ghmeqker.k | ⊢ 𝐾 = ( ◡ 𝐹 “ { 0 } ) | |
| 4 | ghmeqker.m | ⊢ − = ( -g ‘ 𝑆 ) | |
| 5 | 2 | sneqi | ⊢ { 0 } = { ( 0g ‘ 𝑇 ) } |
| 6 | 5 | imaeq2i | ⊢ ( ◡ 𝐹 “ { 0 } ) = ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) |
| 7 | 3 6 | eqtri | ⊢ 𝐾 = ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) |
| 8 | 7 | eleq2i | ⊢ ( ( 𝑈 − 𝑉 ) ∈ 𝐾 ↔ ( 𝑈 − 𝑉 ) ∈ ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) ) |
| 9 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 10 | 1 9 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 11 | 10 | ffnd | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 Fn 𝐵 ) |
| 12 | 11 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝐹 Fn 𝐵 ) |
| 13 | fniniseg | ⊢ ( 𝐹 Fn 𝐵 → ( ( 𝑈 − 𝑉 ) ∈ ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) | |
| 14 | 12 13 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝑈 − 𝑉 ) ∈ ( ◡ 𝐹 “ { ( 0g ‘ 𝑇 ) } ) ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
| 15 | 8 14 | bitrid | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝑈 − 𝑉 ) ∈ 𝐾 ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
| 16 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑆 ∈ Grp ) | |
| 17 | 1 4 | grpsubcl | ⊢ ( ( 𝑆 ∈ Grp ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 − 𝑉 ) ∈ 𝐵 ) |
| 18 | 16 17 | syl3an1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝑈 − 𝑉 ) ∈ 𝐵 ) |
| 19 | 18 | biantrurd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) ) |
| 20 | eqid | ⊢ ( -g ‘ 𝑇 ) = ( -g ‘ 𝑇 ) | |
| 21 | 1 4 20 | ghmsub | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) ) |
| 22 | 21 | eqeq1d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) |
| 23 | 19 22 | bitr3d | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( ( 𝑈 − 𝑉 ) ∈ 𝐵 ∧ ( 𝐹 ‘ ( 𝑈 − 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ↔ ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ) ) |
| 24 | ghmgrp2 | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝑇 ∈ Grp ) | |
| 25 | 24 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑇 ∈ Grp ) |
| 26 | 10 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝐹 : 𝐵 ⟶ ( Base ‘ 𝑇 ) ) |
| 27 | simp2 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑈 ∈ 𝐵 ) | |
| 28 | 26 27 | ffvelcdmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ) |
| 29 | simp3 | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → 𝑉 ∈ 𝐵 ) | |
| 30 | 26 29 | ffvelcdmd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) |
| 31 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 32 | 9 31 20 | grpsubeq0 | ⊢ ( ( 𝑇 ∈ Grp ∧ ( 𝐹 ‘ 𝑈 ) ∈ ( Base ‘ 𝑇 ) ∧ ( 𝐹 ‘ 𝑉 ) ∈ ( Base ‘ 𝑇 ) ) → ( ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ) ) |
| 33 | 25 28 30 32 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( ( 𝐹 ‘ 𝑈 ) ( -g ‘ 𝑇 ) ( 𝐹 ‘ 𝑉 ) ) = ( 0g ‘ 𝑇 ) ↔ ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ) ) |
| 34 | 15 23 33 | 3bitrrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ 𝑈 ∈ 𝐵 ∧ 𝑉 ∈ 𝐵 ) → ( ( 𝐹 ‘ 𝑈 ) = ( 𝐹 ‘ 𝑉 ) ↔ ( 𝑈 − 𝑉 ) ∈ 𝐾 ) ) |