This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a group homomorphism F is injective, it maps the zero of one group (and only the zero) to the zero of the other group. (Contributed by AV, 24-Oct-2019) (Revised by Thierry Arnoux, 13-May-2023)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | f1ghm0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| f1ghm0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | ||
| f1ghm0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑅 ) | ||
| f1ghm0to0.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| Assertion | f1ghm0to0 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | f1ghm0to0.a | ⊢ 𝐴 = ( Base ‘ 𝑅 ) | |
| 2 | f1ghm0to0.b | ⊢ 𝐵 = ( Base ‘ 𝑆 ) | |
| 3 | f1ghm0to0.n | ⊢ 𝑁 = ( 0g ‘ 𝑅 ) | |
| 4 | f1ghm0to0.0 | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 5 | 3 4 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → ( 𝐹 ‘ 𝑁 ) = 0 ) |
| 6 | 5 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑁 ) = 0 ) |
| 7 | 6 | eqeq2d | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑁 ) ↔ ( 𝐹 ‘ 𝑋 ) = 0 ) ) |
| 8 | simp2 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 9 | simp3 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) | |
| 10 | ghmgrp1 | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑅 ∈ Grp ) | |
| 11 | 1 3 | grpidcl | ⊢ ( 𝑅 ∈ Grp → 𝑁 ∈ 𝐴 ) |
| 12 | 10 11 | syl | ⊢ ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) → 𝑁 ∈ 𝐴 ) |
| 13 | 12 | 3ad2ant1 | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → 𝑁 ∈ 𝐴 ) |
| 14 | f1veqaeq | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ ( 𝑋 ∈ 𝐴 ∧ 𝑁 ∈ 𝐴 ) ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑁 ) → 𝑋 = 𝑁 ) ) | |
| 15 | 8 9 13 14 | syl12anc | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑁 ) → 𝑋 = 𝑁 ) ) |
| 16 | 7 15 | sylbird | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 → 𝑋 = 𝑁 ) ) |
| 17 | fveq2 | ⊢ ( 𝑋 = 𝑁 → ( 𝐹 ‘ 𝑋 ) = ( 𝐹 ‘ 𝑁 ) ) | |
| 18 | 17 6 | sylan9eqr | ⊢ ( ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) ∧ 𝑋 = 𝑁 ) → ( 𝐹 ‘ 𝑋 ) = 0 ) |
| 19 | 18 | ex | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( 𝑋 = 𝑁 → ( 𝐹 ‘ 𝑋 ) = 0 ) ) |
| 20 | 16 19 | impbid | ⊢ ( ( 𝐹 ∈ ( 𝑅 GrpHom 𝑆 ) ∧ 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑋 ∈ 𝐴 ) → ( ( 𝐹 ‘ 𝑋 ) = 0 ↔ 𝑋 = 𝑁 ) ) |