This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real function is a nonnegative extended real function if all its values are greater than or equal to zero. (Contributed by Mario Carneiro, 28-Jun-2014) (Revised by Mario Carneiro, 28-Jul-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xrge0f | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffn | ⊢ ( 𝐹 : ℝ ⟶ ℝ → 𝐹 Fn ℝ ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 Fn ℝ ) |
| 3 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 4 | 3 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ℝ ⊆ ℂ ) |
| 5 | 4 1 | 0pledm | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝 ∘r ≤ 𝐹 ↔ ( ℝ × { 0 } ) ∘r ≤ 𝐹 ) ) |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | fnconstg | ⊢ ( 0 ∈ ℝ → ( ℝ × { 0 } ) Fn ℝ ) | |
| 8 | 6 7 | mp1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ℝ × { 0 } ) Fn ℝ ) |
| 9 | reex | ⊢ ℝ ∈ V | |
| 10 | 9 | a1i | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ℝ ∈ V ) |
| 11 | inidm | ⊢ ( ℝ ∩ ℝ ) = ℝ | |
| 12 | c0ex | ⊢ 0 ∈ V | |
| 13 | 12 | fvconst2 | ⊢ ( 𝑥 ∈ ℝ → ( ( ℝ × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 14 | 13 | adantl | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( ( ℝ × { 0 } ) ‘ 𝑥 ) = 0 ) |
| 15 | eqidd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 16 | 8 1 10 10 11 14 15 | ofrfval | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ( ℝ × { 0 } ) ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) |
| 17 | ffvelcdm | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ ) | |
| 18 | 17 | rexrd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ) |
| 19 | 18 | biantrurd | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 20 | elxrge0 | ⊢ ( ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝐹 ‘ 𝑥 ) ∈ ℝ* ∧ 0 ≤ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 21 | 19 20 | bitr4di | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 𝑥 ∈ ℝ ) → ( 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
| 22 | 21 | ralbidva | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( ∀ 𝑥 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑥 ) ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
| 23 | 5 16 22 | 3bitrd | ⊢ ( 𝐹 : ℝ ⟶ ℝ → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) |
| 24 | 23 | biimpa | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) |
| 25 | ffnfv | ⊢ ( 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ↔ ( 𝐹 Fn ℝ ∧ ∀ 𝑥 ∈ ℝ ( 𝐹 ‘ 𝑥 ) ∈ ( 0 [,] +∞ ) ) ) | |
| 26 | 2 24 25 | sylanbrc | ⊢ ( ( 𝐹 : ℝ ⟶ ℝ ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ( 0 [,] +∞ ) ) |