This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1ge0 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 0 ≤ ( ∫1 ‘ 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1frn | ⊢ ( 𝐹 ∈ dom ∫1 → ran 𝐹 ∈ Fin ) | |
| 2 | difss | ⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 | |
| 3 | ssfi | ⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) | |
| 4 | 1 2 3 | sylancl | ⊢ ( 𝐹 ∈ dom ∫1 → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 5 | 4 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ∈ Fin ) |
| 6 | i1ff | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 : ℝ ⟶ ℝ ) | |
| 7 | 6 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 : ℝ ⟶ ℝ ) |
| 8 | 7 | frnd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ran 𝐹 ⊆ ℝ ) |
| 9 | 8 | ssdifssd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ran 𝐹 ∖ { 0 } ) ⊆ ℝ ) |
| 10 | 9 | sselda | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ ℝ ) |
| 11 | i1fima2sn | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) | |
| 12 | 11 | adantlr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ℝ ) |
| 13 | 10 12 | remulcld | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ℝ ) |
| 14 | eldifi | ⊢ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) → 𝑥 ∈ ran 𝐹 ) | |
| 15 | 0cn | ⊢ 0 ∈ ℂ | |
| 16 | fnconstg | ⊢ ( 0 ∈ ℂ → ( ℂ × { 0 } ) Fn ℂ ) | |
| 17 | 15 16 | ax-mp | ⊢ ( ℂ × { 0 } ) Fn ℂ |
| 18 | df-0p | ⊢ 0𝑝 = ( ℂ × { 0 } ) | |
| 19 | 18 | fneq1i | ⊢ ( 0𝑝 Fn ℂ ↔ ( ℂ × { 0 } ) Fn ℂ ) |
| 20 | 17 19 | mpbir | ⊢ 0𝑝 Fn ℂ |
| 21 | 20 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → 0𝑝 Fn ℂ ) |
| 22 | 6 | ffnd | ⊢ ( 𝐹 ∈ dom ∫1 → 𝐹 Fn ℝ ) |
| 23 | cnex | ⊢ ℂ ∈ V | |
| 24 | 23 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℂ ∈ V ) |
| 25 | reex | ⊢ ℝ ∈ V | |
| 26 | 25 | a1i | ⊢ ( 𝐹 ∈ dom ∫1 → ℝ ∈ V ) |
| 27 | ax-resscn | ⊢ ℝ ⊆ ℂ | |
| 28 | sseqin2 | ⊢ ( ℝ ⊆ ℂ ↔ ( ℂ ∩ ℝ ) = ℝ ) | |
| 29 | 27 28 | mpbi | ⊢ ( ℂ ∩ ℝ ) = ℝ |
| 30 | 0pval | ⊢ ( 𝑦 ∈ ℂ → ( 0𝑝 ‘ 𝑦 ) = 0 ) | |
| 31 | 30 | adantl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ℂ ) → ( 0𝑝 ‘ 𝑦 ) = 0 ) |
| 32 | eqidd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 𝑦 ∈ ℝ ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) | |
| 33 | 21 22 24 26 29 31 32 | ofrfval | ⊢ ( 𝐹 ∈ dom ∫1 → ( 0𝑝 ∘r ≤ 𝐹 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 34 | 33 | biimpa | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) |
| 35 | 22 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 𝐹 Fn ℝ ) |
| 36 | breq2 | ⊢ ( 𝑥 = ( 𝐹 ‘ 𝑦 ) → ( 0 ≤ 𝑥 ↔ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) | |
| 37 | 36 | ralrn | ⊢ ( 𝐹 Fn ℝ → ( ∀ 𝑥 ∈ ran 𝐹 0 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 38 | 35 37 | syl | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∀ 𝑥 ∈ ran 𝐹 0 ≤ 𝑥 ↔ ∀ 𝑦 ∈ ℝ 0 ≤ ( 𝐹 ‘ 𝑦 ) ) ) |
| 39 | 34 38 | mpbird | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ∀ 𝑥 ∈ ran 𝐹 0 ≤ 𝑥 ) |
| 40 | 39 | r19.21bi | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ran 𝐹 ) → 0 ≤ 𝑥 ) |
| 41 | 14 40 | sylan2 | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ 𝑥 ) |
| 42 | i1fima | ⊢ ( 𝐹 ∈ dom ∫1 → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) | |
| 43 | 42 | ad2antrr | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol ) |
| 44 | mblss | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ ) | |
| 45 | ovolge0 | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ⊆ ℝ → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) | |
| 46 | 44 45 | syl | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → 0 ≤ ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 47 | mblvol | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) = ( vol* ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) | |
| 48 | 46 47 | breqtrrd | ⊢ ( ( ◡ 𝐹 “ { 𝑥 } ) ∈ dom vol → 0 ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 49 | 43 48 | syl | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
| 50 | 10 12 41 49 | mulge0d | ⊢ ( ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 0 ≤ ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 51 | 5 13 50 | fsumge0 | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 0 ≤ Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 52 | itg1val | ⊢ ( 𝐹 ∈ dom ∫1 → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) | |
| 53 | 52 | adantr | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → ( ∫1 ‘ 𝐹 ) = Σ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑥 · ( vol ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
| 54 | 51 53 | breqtrrd | ⊢ ( ( 𝐹 ∈ dom ∫1 ∧ 0𝑝 ∘r ≤ 𝐹 ) → 0 ≤ ( ∫1 ‘ 𝐹 ) ) |