This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the integral on positive simple functions. (Contributed by Mario Carneiro, 19-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | itg1ge0 | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ ( S.1 ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | i1frn | |- ( F e. dom S.1 -> ran F e. Fin ) |
|
| 2 | difss | |- ( ran F \ { 0 } ) C_ ran F |
|
| 3 | ssfi | |- ( ( ran F e. Fin /\ ( ran F \ { 0 } ) C_ ran F ) -> ( ran F \ { 0 } ) e. Fin ) |
|
| 4 | 1 2 3 | sylancl | |- ( F e. dom S.1 -> ( ran F \ { 0 } ) e. Fin ) |
| 5 | 4 | adantr | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( ran F \ { 0 } ) e. Fin ) |
| 6 | i1ff | |- ( F e. dom S.1 -> F : RR --> RR ) |
|
| 7 | 6 | adantr | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> F : RR --> RR ) |
| 8 | 7 | frnd | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ran F C_ RR ) |
| 9 | 8 | ssdifssd | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( ran F \ { 0 } ) C_ RR ) |
| 10 | 9 | sselda | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> x e. RR ) |
| 11 | i1fima2sn | |- ( ( F e. dom S.1 /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
|
| 12 | 11 | adantlr | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( vol ` ( `' F " { x } ) ) e. RR ) |
| 13 | 10 12 | remulcld | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( x x. ( vol ` ( `' F " { x } ) ) ) e. RR ) |
| 14 | eldifi | |- ( x e. ( ran F \ { 0 } ) -> x e. ran F ) |
|
| 15 | 0cn | |- 0 e. CC |
|
| 16 | fnconstg | |- ( 0 e. CC -> ( CC X. { 0 } ) Fn CC ) |
|
| 17 | 15 16 | ax-mp | |- ( CC X. { 0 } ) Fn CC |
| 18 | df-0p | |- 0p = ( CC X. { 0 } ) |
|
| 19 | 18 | fneq1i | |- ( 0p Fn CC <-> ( CC X. { 0 } ) Fn CC ) |
| 20 | 17 19 | mpbir | |- 0p Fn CC |
| 21 | 20 | a1i | |- ( F e. dom S.1 -> 0p Fn CC ) |
| 22 | 6 | ffnd | |- ( F e. dom S.1 -> F Fn RR ) |
| 23 | cnex | |- CC e. _V |
|
| 24 | 23 | a1i | |- ( F e. dom S.1 -> CC e. _V ) |
| 25 | reex | |- RR e. _V |
|
| 26 | 25 | a1i | |- ( F e. dom S.1 -> RR e. _V ) |
| 27 | ax-resscn | |- RR C_ CC |
|
| 28 | sseqin2 | |- ( RR C_ CC <-> ( CC i^i RR ) = RR ) |
|
| 29 | 27 28 | mpbi | |- ( CC i^i RR ) = RR |
| 30 | 0pval | |- ( y e. CC -> ( 0p ` y ) = 0 ) |
|
| 31 | 30 | adantl | |- ( ( F e. dom S.1 /\ y e. CC ) -> ( 0p ` y ) = 0 ) |
| 32 | eqidd | |- ( ( F e. dom S.1 /\ y e. RR ) -> ( F ` y ) = ( F ` y ) ) |
|
| 33 | 21 22 24 26 29 31 32 | ofrfval | |- ( F e. dom S.1 -> ( 0p oR <_ F <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
| 34 | 33 | biimpa | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> A. y e. RR 0 <_ ( F ` y ) ) |
| 35 | 22 | adantr | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> F Fn RR ) |
| 36 | breq2 | |- ( x = ( F ` y ) -> ( 0 <_ x <-> 0 <_ ( F ` y ) ) ) |
|
| 37 | 36 | ralrn | |- ( F Fn RR -> ( A. x e. ran F 0 <_ x <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
| 38 | 35 37 | syl | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( A. x e. ran F 0 <_ x <-> A. y e. RR 0 <_ ( F ` y ) ) ) |
| 39 | 34 38 | mpbird | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> A. x e. ran F 0 <_ x ) |
| 40 | 39 | r19.21bi | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ran F ) -> 0 <_ x ) |
| 41 | 14 40 | sylan2 | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ x ) |
| 42 | i1fima | |- ( F e. dom S.1 -> ( `' F " { x } ) e. dom vol ) |
|
| 43 | 42 | ad2antrr | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> ( `' F " { x } ) e. dom vol ) |
| 44 | mblss | |- ( ( `' F " { x } ) e. dom vol -> ( `' F " { x } ) C_ RR ) |
|
| 45 | ovolge0 | |- ( ( `' F " { x } ) C_ RR -> 0 <_ ( vol* ` ( `' F " { x } ) ) ) |
|
| 46 | 44 45 | syl | |- ( ( `' F " { x } ) e. dom vol -> 0 <_ ( vol* ` ( `' F " { x } ) ) ) |
| 47 | mblvol | |- ( ( `' F " { x } ) e. dom vol -> ( vol ` ( `' F " { x } ) ) = ( vol* ` ( `' F " { x } ) ) ) |
|
| 48 | 46 47 | breqtrrd | |- ( ( `' F " { x } ) e. dom vol -> 0 <_ ( vol ` ( `' F " { x } ) ) ) |
| 49 | 43 48 | syl | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ ( vol ` ( `' F " { x } ) ) ) |
| 50 | 10 12 41 49 | mulge0d | |- ( ( ( F e. dom S.1 /\ 0p oR <_ F ) /\ x e. ( ran F \ { 0 } ) ) -> 0 <_ ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 51 | 5 13 50 | fsumge0 | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 52 | itg1val | |- ( F e. dom S.1 -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
|
| 53 | 52 | adantr | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> ( S.1 ` F ) = sum_ x e. ( ran F \ { 0 } ) ( x x. ( vol ` ( `' F " { x } ) ) ) ) |
| 54 | 51 53 | breqtrrd | |- ( ( F e. dom S.1 /\ 0p oR <_ F ) -> 0 <_ ( S.1 ` F ) ) |