This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate "is a toset". (Contributed by FL, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istos.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| istos.l | ⊢ ≤ = ( le ‘ 𝐾 ) | ||
| Assertion | istos | ⊢ ( 𝐾 ∈ Toset ↔ ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istos.b | ⊢ 𝐵 = ( Base ‘ 𝐾 ) | |
| 2 | istos.l | ⊢ ≤ = ( le ‘ 𝐾 ) | |
| 3 | fveq2 | ⊢ ( 𝑓 = 𝐾 → ( Base ‘ 𝑓 ) = ( Base ‘ 𝐾 ) ) | |
| 4 | fveq2 | ⊢ ( 𝑓 = 𝐾 → ( le ‘ 𝑓 ) = ( le ‘ 𝐾 ) ) | |
| 5 | 4 | sbceq1d | ⊢ ( 𝑓 = 𝐾 → ( [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ [ ( le ‘ 𝐾 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ) ) |
| 6 | 3 5 | sbceqbid | ⊢ ( 𝑓 = 𝐾 → ( [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ [ ( Base ‘ 𝐾 ) / 𝑏 ] [ ( le ‘ 𝐾 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ) ) |
| 7 | fvex | ⊢ ( Base ‘ 𝐾 ) ∈ V | |
| 8 | fvex | ⊢ ( le ‘ 𝐾 ) ∈ V | |
| 9 | eqtr | ⊢ ( ( 𝑏 = ( Base ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) = 𝐵 ) → 𝑏 = 𝐵 ) | |
| 10 | eqtr | ⊢ ( ( 𝑟 = ( le ‘ 𝐾 ) ∧ ( le ‘ 𝐾 ) = ≤ ) → 𝑟 = ≤ ) | |
| 11 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑥 𝑟 𝑦 ↔ 𝑥 ≤ 𝑦 ) ) | |
| 12 | breq | ⊢ ( 𝑟 = ≤ → ( 𝑦 𝑟 𝑥 ↔ 𝑦 ≤ 𝑥 ) ) | |
| 13 | 11 12 | orbi12d | ⊢ ( 𝑟 = ≤ → ( ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 14 | 13 | 2ralbidv | ⊢ ( 𝑟 = ≤ → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 15 | raleq | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑦 ∈ 𝑏 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) | |
| 16 | 15 | raleqbi1dv | ⊢ ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 17 | 14 16 | sylan9bb | ⊢ ( ( 𝑟 = ≤ ∧ 𝑏 = 𝐵 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 18 | 17 | ex | ⊢ ( 𝑟 = ≤ → ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) |
| 19 | 10 18 | syl | ⊢ ( ( 𝑟 = ( le ‘ 𝐾 ) ∧ ( le ‘ 𝐾 ) = ≤ ) → ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) |
| 20 | 19 | expcom | ⊢ ( ( le ‘ 𝐾 ) = ≤ → ( 𝑟 = ( le ‘ 𝐾 ) → ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) ) |
| 21 | 20 | eqcoms | ⊢ ( ≤ = ( le ‘ 𝐾 ) → ( 𝑟 = ( le ‘ 𝐾 ) → ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) ) |
| 22 | 2 21 | ax-mp | ⊢ ( 𝑟 = ( le ‘ 𝐾 ) → ( 𝑏 = 𝐵 → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) |
| 23 | 9 22 | syl5com | ⊢ ( ( 𝑏 = ( Base ‘ 𝐾 ) ∧ ( Base ‘ 𝐾 ) = 𝐵 ) → ( 𝑟 = ( le ‘ 𝐾 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) |
| 24 | 23 | expcom | ⊢ ( ( Base ‘ 𝐾 ) = 𝐵 → ( 𝑏 = ( Base ‘ 𝐾 ) → ( 𝑟 = ( le ‘ 𝐾 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) ) |
| 25 | 24 | eqcoms | ⊢ ( 𝐵 = ( Base ‘ 𝐾 ) → ( 𝑏 = ( Base ‘ 𝐾 ) → ( 𝑟 = ( le ‘ 𝐾 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) ) |
| 26 | 1 25 | ax-mp | ⊢ ( 𝑏 = ( Base ‘ 𝐾 ) → ( 𝑟 = ( le ‘ 𝐾 ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) ) |
| 27 | 26 | imp | ⊢ ( ( 𝑏 = ( Base ‘ 𝐾 ) ∧ 𝑟 = ( le ‘ 𝐾 ) ) → ( ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 28 | 7 8 27 | sbc2ie | ⊢ ( [ ( Base ‘ 𝐾 ) / 𝑏 ] [ ( le ‘ 𝐾 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) |
| 29 | 6 28 | bitrdi | ⊢ ( 𝑓 = 𝐾 → ( [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |
| 30 | df-toset | ⊢ Toset = { 𝑓 ∈ Poset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) } | |
| 31 | 29 30 | elrab2 | ⊢ ( 𝐾 ∈ Toset ↔ ( 𝐾 ∈ Poset ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( 𝑥 ≤ 𝑦 ∨ 𝑦 ≤ 𝑥 ) ) ) |