This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Conversion of implicit substitution to explicit class substitution. (Contributed by NM, 16-Dec-2008) (Revised by Mario Carneiro, 19-Dec-2013) (Proof shortened by GG, 12-Oct-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | sbc2ie.1 | ⊢ 𝐴 ∈ V | |
| sbc2ie.2 | ⊢ 𝐵 ∈ V | ||
| sbc2ie.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | ||
| Assertion | sbc2ie | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sbc2ie.1 | ⊢ 𝐴 ∈ V | |
| 2 | sbc2ie.2 | ⊢ 𝐵 ∈ V | |
| 3 | sbc2ie.3 | ⊢ ( ( 𝑥 = 𝐴 ∧ 𝑦 = 𝐵 ) → ( 𝜑 ↔ 𝜓 ) ) | |
| 4 | 2 | a1i | ⊢ ( 𝑥 = 𝐴 → 𝐵 ∈ V ) |
| 5 | 4 3 | sbcied | ⊢ ( 𝑥 = 𝐴 → ( [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) ) |
| 6 | 1 5 | sbcie | ⊢ ( [ 𝐴 / 𝑥 ] [ 𝐵 / 𝑦 ] 𝜑 ↔ 𝜓 ) |