This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Define the class of totally ordered sets (tosets). (Contributed by FL, 17-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-toset | ⊢ Toset = { 𝑓 ∈ Poset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | ctos | ⊢ Toset | |
| 1 | vf | ⊢ 𝑓 | |
| 2 | cpo | ⊢ Poset | |
| 3 | cbs | ⊢ Base | |
| 4 | 1 | cv | ⊢ 𝑓 |
| 5 | 4 3 | cfv | ⊢ ( Base ‘ 𝑓 ) |
| 6 | vb | ⊢ 𝑏 | |
| 7 | cple | ⊢ le | |
| 8 | 4 7 | cfv | ⊢ ( le ‘ 𝑓 ) |
| 9 | vr | ⊢ 𝑟 | |
| 10 | vx | ⊢ 𝑥 | |
| 11 | 6 | cv | ⊢ 𝑏 |
| 12 | vy | ⊢ 𝑦 | |
| 13 | 10 | cv | ⊢ 𝑥 |
| 14 | 9 | cv | ⊢ 𝑟 |
| 15 | 12 | cv | ⊢ 𝑦 |
| 16 | 13 15 14 | wbr | ⊢ 𝑥 𝑟 𝑦 |
| 17 | 15 13 14 | wbr | ⊢ 𝑦 𝑟 𝑥 |
| 18 | 16 17 | wo | ⊢ ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) |
| 19 | 18 12 11 | wral | ⊢ ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) |
| 20 | 19 10 11 | wral | ⊢ ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) |
| 21 | 20 9 8 | wsbc | ⊢ [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) |
| 22 | 21 6 5 | wsbc | ⊢ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) |
| 23 | 22 1 2 | crab | ⊢ { 𝑓 ∈ Poset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) } |
| 24 | 0 23 | wceq | ⊢ Toset = { 𝑓 ∈ Poset ∣ [ ( Base ‘ 𝑓 ) / 𝑏 ] [ ( le ‘ 𝑓 ) / 𝑟 ] ∀ 𝑥 ∈ 𝑏 ∀ 𝑦 ∈ 𝑏 ( 𝑥 𝑟 𝑦 ∨ 𝑦 𝑟 𝑥 ) } |