This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring is closed under multiplication. (Contributed by Mario Carneiro, 2-Dec-2014) Generalization of subrgmcl . (Revised by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | subrngmcl.p | ⊢ · = ( .r ‘ 𝑅 ) | |
| Assertion | subrngmcl | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 · 𝑌 ) ∈ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | subrngmcl.p | ⊢ · = ( .r ‘ 𝑅 ) | |
| 2 | eqid | ⊢ ( 𝑅 ↾s 𝐴 ) = ( 𝑅 ↾s 𝐴 ) | |
| 3 | 2 | subrngrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑅 ↾s 𝐴 ) ∈ Rng ) |
| 5 | simp2 | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ 𝐴 ) | |
| 6 | 2 | subrngbas | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 7 | 6 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝐴 = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 8 | 5 7 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 9 | simp3 | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ 𝐴 ) | |
| 10 | 9 7 | eleqtrd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 11 | eqid | ⊢ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) = ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) | |
| 12 | eqid | ⊢ ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) | |
| 13 | 11 12 | rngcl | ⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝑋 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ∧ 𝑌 ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) → ( 𝑋 ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 14 | 4 8 10 13 | syl3anc | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ∈ ( Base ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 15 | 2 1 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 16 | 15 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → · = ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) ) |
| 17 | 16 | oveqd | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 · 𝑌 ) = ( 𝑋 ( .r ‘ ( 𝑅 ↾s 𝐴 ) ) 𝑌 ) ) |
| 18 | 14 17 7 | 3eltr4d | ⊢ ( ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ∧ 𝑋 ∈ 𝐴 ∧ 𝑌 ∈ 𝐴 ) → ( 𝑋 · 𝑌 ) ∈ 𝐴 ) |