This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subring of non-unital ring predicate. (Contributed by AV, 14-Feb-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | issubrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| Assertion | issubrng | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubrng.b | ⊢ 𝐵 = ( Base ‘ 𝑅 ) | |
| 2 | df-subrng | ⊢ SubRng = ( 𝑤 ∈ Rng ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑤 ) ∣ ( 𝑤 ↾s 𝑠 ) ∈ Rng } ) | |
| 3 | 2 | mptrcl | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) → 𝑅 ∈ Rng ) |
| 4 | simp1 | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) → 𝑅 ∈ Rng ) | |
| 5 | fveq2 | ⊢ ( 𝑟 = 𝑅 → ( Base ‘ 𝑟 ) = ( Base ‘ 𝑅 ) ) | |
| 6 | 5 | pweqd | ⊢ ( 𝑟 = 𝑅 → 𝒫 ( Base ‘ 𝑟 ) = 𝒫 ( Base ‘ 𝑅 ) ) |
| 7 | oveq1 | ⊢ ( 𝑟 = 𝑅 → ( 𝑟 ↾s 𝑠 ) = ( 𝑅 ↾s 𝑠 ) ) | |
| 8 | 7 | eleq1d | ⊢ ( 𝑟 = 𝑅 → ( ( 𝑟 ↾s 𝑠 ) ∈ Rng ↔ ( 𝑅 ↾s 𝑠 ) ∈ Rng ) ) |
| 9 | 6 8 | rabeqbidv | ⊢ ( 𝑟 = 𝑅 → { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( 𝑟 ↾s 𝑠 ) ∈ Rng } = { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ) |
| 10 | df-subrng | ⊢ SubRng = ( 𝑟 ∈ Rng ↦ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑟 ) ∣ ( 𝑟 ↾s 𝑠 ) ∈ Rng } ) | |
| 11 | fvex | ⊢ ( Base ‘ 𝑅 ) ∈ V | |
| 12 | 11 | pwex | ⊢ 𝒫 ( Base ‘ 𝑅 ) ∈ V |
| 13 | 12 | rabex | ⊢ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ∈ V |
| 14 | 9 10 13 | fvmpt | ⊢ ( 𝑅 ∈ Rng → ( SubRng ‘ 𝑅 ) = { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ) |
| 15 | 14 | eleq2d | ⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ 𝐴 ∈ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ) ) |
| 16 | oveq2 | ⊢ ( 𝑠 = 𝐴 → ( 𝑅 ↾s 𝑠 ) = ( 𝑅 ↾s 𝐴 ) ) | |
| 17 | 16 | eleq1d | ⊢ ( 𝑠 = 𝐴 → ( ( 𝑅 ↾s 𝑠 ) ∈ Rng ↔ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ) |
| 18 | 17 | elrab | ⊢ ( 𝐴 ∈ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ↔ ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ) |
| 19 | 1 | eqcomi | ⊢ ( Base ‘ 𝑅 ) = 𝐵 |
| 20 | 19 | sseq2i | ⊢ ( 𝐴 ⊆ ( Base ‘ 𝑅 ) ↔ 𝐴 ⊆ 𝐵 ) |
| 21 | 20 | anbi2i | ⊢ ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |
| 22 | ibar | ⊢ ( 𝑅 ∈ Rng → ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) ) | |
| 23 | 21 22 | bitrid | ⊢ ( 𝑅 ∈ Rng → ( ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ↔ ( 𝑅 ∈ Rng ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) ) |
| 24 | 11 | elpw2 | ⊢ ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ↔ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 25 | 24 | anbi2ci | ⊢ ( ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ↔ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ ( Base ‘ 𝑅 ) ) ) |
| 26 | 3anass | ⊢ ( ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ↔ ( 𝑅 ∈ Rng ∧ ( ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) | |
| 27 | 23 25 26 | 3bitr4g | ⊢ ( 𝑅 ∈ Rng → ( ( 𝐴 ∈ 𝒫 ( Base ‘ 𝑅 ) ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
| 28 | 18 27 | bitrid | ⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ { 𝑠 ∈ 𝒫 ( Base ‘ 𝑅 ) ∣ ( 𝑅 ↾s 𝑠 ) ∈ Rng } ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
| 29 | 15 28 | bitrd | ⊢ ( 𝑅 ∈ Rng → ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) ) |
| 30 | 3 4 29 | pm5.21nii | ⊢ ( 𝐴 ∈ ( SubRng ‘ 𝑅 ) ↔ ( 𝑅 ∈ Rng ∧ ( 𝑅 ↾s 𝐴 ) ∈ Rng ∧ 𝐴 ⊆ 𝐵 ) ) |