This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Submonoids are subsets that are also monoids with the same zero. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubm2.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| issubm2.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | ||
| issubm2.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | ||
| Assertion | issubm2 | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubm2.b | ⊢ 𝐵 = ( Base ‘ 𝑀 ) | |
| 2 | issubm2.z | ⊢ 0 = ( 0g ‘ 𝑀 ) | |
| 3 | issubm2.h | ⊢ 𝐻 = ( 𝑀 ↾s 𝑆 ) | |
| 4 | eqid | ⊢ ( +g ‘ 𝑀 ) = ( +g ‘ 𝑀 ) | |
| 5 | 1 2 4 | issubm | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) ) |
| 6 | 1 4 2 3 | issubmnd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) → ( 𝐻 ∈ Mnd ↔ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) |
| 7 | 6 | bicomd | ⊢ ( ( 𝑀 ∈ Mnd ∧ 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ 𝐻 ∈ Mnd ) ) |
| 8 | 7 | 3expb | ⊢ ( ( 𝑀 ∈ Mnd ∧ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ) → ( ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ↔ 𝐻 ∈ Mnd ) ) |
| 9 | 8 | pm5.32da | ⊢ ( 𝑀 ∈ Mnd → ( ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ) ) |
| 10 | df-3an | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ) | |
| 11 | df-3an | ⊢ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ↔ ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ) ∧ 𝐻 ∈ Mnd ) ) | |
| 12 | 9 10 11 | 3bitr4g | ⊢ ( 𝑀 ∈ Mnd → ( ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ∀ 𝑦 ∈ 𝑆 ( 𝑥 ( +g ‘ 𝑀 ) 𝑦 ) ∈ 𝑆 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |
| 13 | 5 12 | bitrd | ⊢ ( 𝑀 ∈ Mnd → ( 𝑆 ∈ ( SubMnd ‘ 𝑀 ) ↔ ( 𝑆 ⊆ 𝐵 ∧ 0 ∈ 𝑆 ∧ 𝐻 ∈ Mnd ) ) ) |