This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A submonoid is a subset of a monoid which contains the identity and is closed under the operation. Such subsets are themselves monoids with the same identity. (Contributed by Mario Carneiro, 7-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | df-submnd | ⊢ SubMnd = ( 𝑠 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | csubmnd | ⊢ SubMnd | |
| 1 | vs | ⊢ 𝑠 | |
| 2 | cmnd | ⊢ Mnd | |
| 3 | vt | ⊢ 𝑡 | |
| 4 | cbs | ⊢ Base | |
| 5 | 1 | cv | ⊢ 𝑠 |
| 6 | 5 4 | cfv | ⊢ ( Base ‘ 𝑠 ) |
| 7 | 6 | cpw | ⊢ 𝒫 ( Base ‘ 𝑠 ) |
| 8 | c0g | ⊢ 0g | |
| 9 | 5 8 | cfv | ⊢ ( 0g ‘ 𝑠 ) |
| 10 | 3 | cv | ⊢ 𝑡 |
| 11 | 9 10 | wcel | ⊢ ( 0g ‘ 𝑠 ) ∈ 𝑡 |
| 12 | vx | ⊢ 𝑥 | |
| 13 | vy | ⊢ 𝑦 | |
| 14 | 12 | cv | ⊢ 𝑥 |
| 15 | cplusg | ⊢ +g | |
| 16 | 5 15 | cfv | ⊢ ( +g ‘ 𝑠 ) |
| 17 | 13 | cv | ⊢ 𝑦 |
| 18 | 14 17 16 | co | ⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) |
| 19 | 18 10 | wcel | ⊢ ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 20 | 19 13 10 | wral | ⊢ ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 21 | 20 12 10 | wral | ⊢ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 |
| 22 | 11 21 | wa | ⊢ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) |
| 23 | 22 3 7 | crab | ⊢ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } |
| 24 | 1 2 23 | cmpt | ⊢ ( 𝑠 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } ) |
| 25 | 0 24 | wceq | ⊢ SubMnd = ( 𝑠 ∈ Mnd ↦ { 𝑡 ∈ 𝒫 ( Base ‘ 𝑠 ) ∣ ( ( 0g ‘ 𝑠 ) ∈ 𝑡 ∧ ∀ 𝑥 ∈ 𝑡 ∀ 𝑦 ∈ 𝑡 ( 𝑥 ( +g ‘ 𝑠 ) 𝑦 ) ∈ 𝑡 ) } ) |