This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubassa.s | ⊢ 𝑆 = ( 𝑊 ↾s 𝐴 ) | |
| issubassa.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| issubassa.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | ||
| issubassa.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | ||
| Assertion | issubassa | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ∈ AssAlg ↔ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubassa.s | ⊢ 𝑆 = ( 𝑊 ↾s 𝐴 ) | |
| 2 | issubassa.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 3 | issubassa.v | ⊢ 𝑉 = ( Base ‘ 𝑊 ) | |
| 4 | issubassa.o | ⊢ 1 = ( 1r ‘ 𝑊 ) | |
| 5 | simpl1 | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑊 ∈ AssAlg ) | |
| 6 | assaring | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ Ring ) | |
| 7 | 5 6 | syl | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑊 ∈ Ring ) |
| 8 | assaring | ⊢ ( 𝑆 ∈ AssAlg → 𝑆 ∈ Ring ) | |
| 9 | 8 | adantl | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑆 ∈ Ring ) |
| 10 | 1 9 | eqeltrrid | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝑊 ↾s 𝐴 ) ∈ Ring ) |
| 11 | simpl3 | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝐴 ⊆ 𝑉 ) | |
| 12 | simpl2 | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 1 ∈ 𝐴 ) | |
| 13 | 11 12 | jca | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴 ) ) |
| 14 | 3 4 | issubrg | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ↔ ( ( 𝑊 ∈ Ring ∧ ( 𝑊 ↾s 𝐴 ) ∈ Ring ) ∧ ( 𝐴 ⊆ 𝑉 ∧ 1 ∈ 𝐴 ) ) ) |
| 15 | 7 10 13 14 | syl21anbrc | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝐴 ∈ ( SubRing ‘ 𝑊 ) ) |
| 16 | assalmod | ⊢ ( 𝑆 ∈ AssAlg → 𝑆 ∈ LMod ) | |
| 17 | 16 | adantl | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝑆 ∈ LMod ) |
| 18 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 19 | 1 3 2 | islss3 | ⊢ ( 𝑊 ∈ LMod → ( 𝐴 ∈ 𝐿 ↔ ( 𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod ) ) ) |
| 20 | 5 18 19 | 3syl | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝐴 ∈ 𝐿 ↔ ( 𝐴 ⊆ 𝑉 ∧ 𝑆 ∈ LMod ) ) ) |
| 21 | 11 17 20 | mpbir2and | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → 𝐴 ∈ 𝐿 ) |
| 22 | 15 21 | jca | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ 𝑆 ∈ AssAlg ) → ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) |
| 23 | 1 2 | issubassa3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |
| 24 | 23 | 3ad2antl1 | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |
| 25 | 22 24 | impbida | ⊢ ( ( 𝑊 ∈ AssAlg ∧ 1 ∈ 𝐴 ∧ 𝐴 ⊆ 𝑉 ) → ( 𝑆 ∈ AssAlg ↔ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ) |