This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subalgebras of an associative algebra are exactly the subrings (under the ring multiplication) that are simultaneously subspaces (under the scalar multiplication from the vector space). (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubassa.s | |- S = ( W |`s A ) |
|
| issubassa.l | |- L = ( LSubSp ` W ) |
||
| issubassa.v | |- V = ( Base ` W ) |
||
| issubassa.o | |- .1. = ( 1r ` W ) |
||
| Assertion | issubassa | |- ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) -> ( S e. AssAlg <-> ( A e. ( SubRing ` W ) /\ A e. L ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubassa.s | |- S = ( W |`s A ) |
|
| 2 | issubassa.l | |- L = ( LSubSp ` W ) |
|
| 3 | issubassa.v | |- V = ( Base ` W ) |
|
| 4 | issubassa.o | |- .1. = ( 1r ` W ) |
|
| 5 | simpl1 | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> W e. AssAlg ) |
|
| 6 | assaring | |- ( W e. AssAlg -> W e. Ring ) |
|
| 7 | 5 6 | syl | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> W e. Ring ) |
| 8 | assaring | |- ( S e. AssAlg -> S e. Ring ) |
|
| 9 | 8 | adantl | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> S e. Ring ) |
| 10 | 1 9 | eqeltrrid | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> ( W |`s A ) e. Ring ) |
| 11 | simpl3 | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> A C_ V ) |
|
| 12 | simpl2 | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> .1. e. A ) |
|
| 13 | 11 12 | jca | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> ( A C_ V /\ .1. e. A ) ) |
| 14 | 3 4 | issubrg | |- ( A e. ( SubRing ` W ) <-> ( ( W e. Ring /\ ( W |`s A ) e. Ring ) /\ ( A C_ V /\ .1. e. A ) ) ) |
| 15 | 7 10 13 14 | syl21anbrc | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> A e. ( SubRing ` W ) ) |
| 16 | assalmod | |- ( S e. AssAlg -> S e. LMod ) |
|
| 17 | 16 | adantl | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> S e. LMod ) |
| 18 | assalmod | |- ( W e. AssAlg -> W e. LMod ) |
|
| 19 | 1 3 2 | islss3 | |- ( W e. LMod -> ( A e. L <-> ( A C_ V /\ S e. LMod ) ) ) |
| 20 | 5 18 19 | 3syl | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> ( A e. L <-> ( A C_ V /\ S e. LMod ) ) ) |
| 21 | 11 17 20 | mpbir2and | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> A e. L ) |
| 22 | 15 21 | jca | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ S e. AssAlg ) -> ( A e. ( SubRing ` W ) /\ A e. L ) ) |
| 23 | 1 2 | issubassa3 | |- ( ( W e. AssAlg /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |
| 24 | 23 | 3ad2antl1 | |- ( ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) /\ ( A e. ( SubRing ` W ) /\ A e. L ) ) -> S e. AssAlg ) |
| 25 | 22 24 | impbida | |- ( ( W e. AssAlg /\ .1. e. A /\ A C_ V ) -> ( S e. AssAlg <-> ( A e. ( SubRing ` W ) /\ A e. L ) ) ) |