This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A subring that is also a subspace is a subalgebra. The key theorem is islss3 . (Contributed by Mario Carneiro, 7-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | issubassa.s | ⊢ 𝑆 = ( 𝑊 ↾s 𝐴 ) | |
| issubassa.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | ||
| Assertion | issubassa3 | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | issubassa.s | ⊢ 𝑆 = ( 𝑊 ↾s 𝐴 ) | |
| 2 | issubassa.l | ⊢ 𝐿 = ( LSubSp ‘ 𝑊 ) | |
| 3 | 1 | subrgbas | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 4 | 3 | ad2antrl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 5 | eqid | ⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) | |
| 6 | 1 5 | resssca | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑆 ) ) |
| 7 | 6 | ad2antrl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑆 ) ) |
| 8 | eqidd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) | |
| 9 | eqid | ⊢ ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑊 ) | |
| 10 | 1 9 | ressvsca | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 11 | 10 | ad2antrl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( ·𝑠 ‘ 𝑊 ) = ( ·𝑠 ‘ 𝑆 ) ) |
| 12 | eqid | ⊢ ( .r ‘ 𝑊 ) = ( .r ‘ 𝑊 ) | |
| 13 | 1 12 | ressmulr | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝑆 ) ) |
| 14 | 13 | ad2antrl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( .r ‘ 𝑊 ) = ( .r ‘ 𝑆 ) ) |
| 15 | assalmod | ⊢ ( 𝑊 ∈ AssAlg → 𝑊 ∈ LMod ) | |
| 16 | simpr | ⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) → 𝐴 ∈ 𝐿 ) | |
| 17 | 1 2 | lsslmod | ⊢ ( ( 𝑊 ∈ LMod ∧ 𝐴 ∈ 𝐿 ) → 𝑆 ∈ LMod ) |
| 18 | 15 16 17 | syl2an | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ LMod ) |
| 19 | 1 | subrgring | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → 𝑆 ∈ Ring ) |
| 20 | 19 | ad2antrl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ Ring ) |
| 21 | idd | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) | |
| 22 | eqid | ⊢ ( Base ‘ 𝑊 ) = ( Base ‘ 𝑊 ) | |
| 23 | 22 | subrgss | ⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) → 𝐴 ⊆ ( Base ‘ 𝑊 ) ) |
| 24 | 23 | ad2antrl | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝐴 ⊆ ( Base ‘ 𝑊 ) ) |
| 25 | 24 | sseld | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( 𝑦 ∈ 𝐴 → 𝑦 ∈ ( Base ‘ 𝑊 ) ) ) |
| 26 | 24 | sseld | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( 𝑧 ∈ 𝐴 → 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
| 27 | 21 25 26 | 3anim123d | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → ( ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) ) |
| 28 | 27 | imp | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) |
| 29 | eqid | ⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) | |
| 30 | 22 5 29 9 12 | assaass | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 31 | 30 | adantlr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 32 | 28 31 | syldan | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑦 ) ( .r ‘ 𝑊 ) 𝑧 ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 33 | 22 5 29 9 12 | assaassr | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 34 | 33 | adantlr | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝑊 ) ∧ 𝑧 ∈ ( Base ‘ 𝑊 ) ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 35 | 28 34 | syldan | ⊢ ( ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) ∧ ( 𝑥 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑦 ∈ 𝐴 ∧ 𝑧 ∈ 𝐴 ) ) → ( 𝑦 ( .r ‘ 𝑊 ) ( 𝑥 ( ·𝑠 ‘ 𝑊 ) 𝑧 ) ) = ( 𝑥 ( ·𝑠 ‘ 𝑊 ) ( 𝑦 ( .r ‘ 𝑊 ) 𝑧 ) ) ) |
| 36 | 4 7 8 11 14 18 20 32 35 | isassad | ⊢ ( ( 𝑊 ∈ AssAlg ∧ ( 𝐴 ∈ ( SubRing ‘ 𝑊 ) ∧ 𝐴 ∈ 𝐿 ) ) → 𝑆 ∈ AssAlg ) |