This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subcategory subset relation is a relation. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brssc | ⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sscrel | ⊢ Rel ⊆cat | |
| 2 | 1 | brrelex12i | ⊢ ( 𝐻 ⊆cat 𝐽 → ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) ) |
| 3 | vex | ⊢ 𝑡 ∈ V | |
| 4 | 3 3 | xpex | ⊢ ( 𝑡 × 𝑡 ) ∈ V |
| 5 | fnex | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ( 𝑡 × 𝑡 ) ∈ V ) → 𝐽 ∈ V ) | |
| 6 | 4 5 | mpan2 | ⊢ ( 𝐽 Fn ( 𝑡 × 𝑡 ) → 𝐽 ∈ V ) |
| 7 | elex | ⊢ ( 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 ∈ V ) | |
| 8 | 7 | rexlimivw | ⊢ ( ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) → 𝐻 ∈ V ) |
| 9 | 6 8 | anim12ci | ⊢ ( ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) ) |
| 10 | 9 | exlimiv | ⊢ ( ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) → ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) ) |
| 11 | simpr | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → 𝑗 = 𝐽 ) | |
| 12 | 11 | fneq1d | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( 𝑗 Fn ( 𝑡 × 𝑡 ) ↔ 𝐽 Fn ( 𝑡 × 𝑡 ) ) ) |
| 13 | simpl | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ℎ = 𝐻 ) | |
| 14 | 11 | fveq1d | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( 𝑗 ‘ 𝑥 ) = ( 𝐽 ‘ 𝑥 ) ) |
| 15 | 14 | pweqd | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → 𝒫 ( 𝑗 ‘ 𝑥 ) = 𝒫 ( 𝐽 ‘ 𝑥 ) ) |
| 16 | 15 | ixpeq2dv | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) = X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) |
| 17 | 13 16 | eleq12d | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ↔ 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
| 18 | 17 | rexbidv | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ↔ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |
| 19 | 12 18 | anbi12d | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) ↔ ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) ) |
| 20 | 19 | exbidv | ⊢ ( ( ℎ = 𝐻 ∧ 𝑗 = 𝐽 ) → ( ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) ) |
| 21 | df-ssc | ⊢ ⊆cat = { 〈 ℎ , 𝑗 〉 ∣ ∃ 𝑡 ( 𝑗 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 ℎ ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝑗 ‘ 𝑥 ) ) } | |
| 22 | 20 21 | brabga | ⊢ ( ( 𝐻 ∈ V ∧ 𝐽 ∈ V ) → ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) ) |
| 23 | 2 10 22 | pm5.21nii | ⊢ ( 𝐻 ⊆cat 𝐽 ↔ ∃ 𝑡 ( 𝐽 Fn ( 𝑡 × 𝑡 ) ∧ ∃ 𝑠 ∈ 𝒫 𝑡 𝐻 ∈ X 𝑥 ∈ ( 𝑠 × 𝑠 ) 𝒫 ( 𝐽 ‘ 𝑥 ) ) ) |