This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the subcategory subset relation when the arguments are known functions. (Contributed by Mario Carneiro, 6-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isssc.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| isssc.2 | |- ( ph -> J Fn ( T X. T ) ) |
||
| isssc.3 | |- ( ph -> T e. V ) |
||
| Assertion | isssc | |- ( ph -> ( H C_cat J <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isssc.1 | |- ( ph -> H Fn ( S X. S ) ) |
|
| 2 | isssc.2 | |- ( ph -> J Fn ( T X. T ) ) |
|
| 3 | isssc.3 | |- ( ph -> T e. V ) |
|
| 4 | brssc | |- ( H C_cat J <-> E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) |
|
| 5 | fndm | |- ( J Fn ( t X. t ) -> dom J = ( t X. t ) ) |
|
| 6 | 5 | adantl | |- ( ( ph /\ J Fn ( t X. t ) ) -> dom J = ( t X. t ) ) |
| 7 | 2 | adantr | |- ( ( ph /\ J Fn ( t X. t ) ) -> J Fn ( T X. T ) ) |
| 8 | 7 | fndmd | |- ( ( ph /\ J Fn ( t X. t ) ) -> dom J = ( T X. T ) ) |
| 9 | 6 8 | eqtr3d | |- ( ( ph /\ J Fn ( t X. t ) ) -> ( t X. t ) = ( T X. T ) ) |
| 10 | 9 | dmeqd | |- ( ( ph /\ J Fn ( t X. t ) ) -> dom ( t X. t ) = dom ( T X. T ) ) |
| 11 | dmxpid | |- dom ( t X. t ) = t |
|
| 12 | dmxpid | |- dom ( T X. T ) = T |
|
| 13 | 10 11 12 | 3eqtr3g | |- ( ( ph /\ J Fn ( t X. t ) ) -> t = T ) |
| 14 | 13 | ex | |- ( ph -> ( J Fn ( t X. t ) -> t = T ) ) |
| 15 | id | |- ( t = T -> t = T ) |
|
| 16 | 15 | sqxpeqd | |- ( t = T -> ( t X. t ) = ( T X. T ) ) |
| 17 | 16 | fneq2d | |- ( t = T -> ( J Fn ( t X. t ) <-> J Fn ( T X. T ) ) ) |
| 18 | 2 17 | syl5ibrcom | |- ( ph -> ( t = T -> J Fn ( t X. t ) ) ) |
| 19 | 14 18 | impbid | |- ( ph -> ( J Fn ( t X. t ) <-> t = T ) ) |
| 20 | 19 | anbi1d | |- ( ph -> ( ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> ( t = T /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) ) |
| 21 | 20 | exbidv | |- ( ph -> ( E. t ( J Fn ( t X. t ) /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> E. t ( t = T /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) ) |
| 22 | 4 21 | bitrid | |- ( ph -> ( H C_cat J <-> E. t ( t = T /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) ) |
| 23 | pweq | |- ( t = T -> ~P t = ~P T ) |
|
| 24 | 23 | rexeqdv | |- ( t = T -> ( E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) <-> E. s e. ~P T H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) |
| 25 | 24 | ceqsexgv | |- ( T e. V -> ( E. t ( t = T /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> E. s e. ~P T H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) |
| 26 | 3 25 | syl | |- ( ph -> ( E. t ( t = T /\ E. s e. ~P t H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> E. s e. ~P T H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) |
| 27 | 22 26 | bitrd | |- ( ph -> ( H C_cat J <-> E. s e. ~P T H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) |
| 28 | df-rex | |- ( E. s e. ~P T H e. X_ z e. ( s X. s ) ~P ( J ` z ) <-> E. s ( s e. ~P T /\ H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) ) |
|
| 29 | 3anass | |- ( ( H e. _V /\ H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) <-> ( H e. _V /\ ( H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) |
|
| 30 | elixp2 | |- ( H e. X_ z e. ( s X. s ) ~P ( J ` z ) <-> ( H e. _V /\ H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) |
|
| 31 | vex | |- s e. _V |
|
| 32 | 31 31 | xpex | |- ( s X. s ) e. _V |
| 33 | fnex | |- ( ( H Fn ( s X. s ) /\ ( s X. s ) e. _V ) -> H e. _V ) |
|
| 34 | 32 33 | mpan2 | |- ( H Fn ( s X. s ) -> H e. _V ) |
| 35 | 34 | adantr | |- ( ( H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) -> H e. _V ) |
| 36 | 35 | pm4.71ri | |- ( ( H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) <-> ( H e. _V /\ ( H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) |
| 37 | 29 30 36 | 3bitr4i | |- ( H e. X_ z e. ( s X. s ) ~P ( J ` z ) <-> ( H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) |
| 38 | fndm | |- ( H Fn ( s X. s ) -> dom H = ( s X. s ) ) |
|
| 39 | 38 | adantl | |- ( ( ph /\ H Fn ( s X. s ) ) -> dom H = ( s X. s ) ) |
| 40 | 1 | adantr | |- ( ( ph /\ H Fn ( s X. s ) ) -> H Fn ( S X. S ) ) |
| 41 | 40 | fndmd | |- ( ( ph /\ H Fn ( s X. s ) ) -> dom H = ( S X. S ) ) |
| 42 | 39 41 | eqtr3d | |- ( ( ph /\ H Fn ( s X. s ) ) -> ( s X. s ) = ( S X. S ) ) |
| 43 | 42 | dmeqd | |- ( ( ph /\ H Fn ( s X. s ) ) -> dom ( s X. s ) = dom ( S X. S ) ) |
| 44 | dmxpid | |- dom ( s X. s ) = s |
|
| 45 | dmxpid | |- dom ( S X. S ) = S |
|
| 46 | 43 44 45 | 3eqtr3g | |- ( ( ph /\ H Fn ( s X. s ) ) -> s = S ) |
| 47 | 46 | ex | |- ( ph -> ( H Fn ( s X. s ) -> s = S ) ) |
| 48 | id | |- ( s = S -> s = S ) |
|
| 49 | 48 | sqxpeqd | |- ( s = S -> ( s X. s ) = ( S X. S ) ) |
| 50 | 49 | fneq2d | |- ( s = S -> ( H Fn ( s X. s ) <-> H Fn ( S X. S ) ) ) |
| 51 | 1 50 | syl5ibrcom | |- ( ph -> ( s = S -> H Fn ( s X. s ) ) ) |
| 52 | 47 51 | impbid | |- ( ph -> ( H Fn ( s X. s ) <-> s = S ) ) |
| 53 | 52 | anbi1d | |- ( ph -> ( ( H Fn ( s X. s ) /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) <-> ( s = S /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) |
| 54 | 37 53 | bitrid | |- ( ph -> ( H e. X_ z e. ( s X. s ) ~P ( J ` z ) <-> ( s = S /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) |
| 55 | 54 | anbi2d | |- ( ph -> ( ( s e. ~P T /\ H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> ( s e. ~P T /\ ( s = S /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) ) |
| 56 | an12 | |- ( ( s e. ~P T /\ ( s = S /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) <-> ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) |
|
| 57 | 55 56 | bitrdi | |- ( ph -> ( ( s e. ~P T /\ H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) ) |
| 58 | 57 | exbidv | |- ( ph -> ( E. s ( s e. ~P T /\ H e. X_ z e. ( s X. s ) ~P ( J ` z ) ) <-> E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) ) |
| 59 | 28 58 | bitrid | |- ( ph -> ( E. s e. ~P T H e. X_ z e. ( s X. s ) ~P ( J ` z ) <-> E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) ) ) |
| 60 | exsimpl | |- ( E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) -> E. s s = S ) |
|
| 61 | isset | |- ( S e. _V <-> E. s s = S ) |
|
| 62 | 60 61 | sylibr | |- ( E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) -> S e. _V ) |
| 63 | 62 | a1i | |- ( ph -> ( E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) -> S e. _V ) ) |
| 64 | ssexg | |- ( ( S C_ T /\ T e. V ) -> S e. _V ) |
|
| 65 | 64 | expcom | |- ( T e. V -> ( S C_ T -> S e. _V ) ) |
| 66 | 3 65 | syl | |- ( ph -> ( S C_ T -> S e. _V ) ) |
| 67 | 66 | adantrd | |- ( ph -> ( ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) -> S e. _V ) ) |
| 68 | 31 | elpw | |- ( s e. ~P T <-> s C_ T ) |
| 69 | sseq1 | |- ( s = S -> ( s C_ T <-> S C_ T ) ) |
|
| 70 | 68 69 | bitrid | |- ( s = S -> ( s e. ~P T <-> S C_ T ) ) |
| 71 | 49 | raleqdv | |- ( s = S -> ( A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) <-> A. z e. ( S X. S ) ( H ` z ) e. ~P ( J ` z ) ) ) |
| 72 | fvex | |- ( H ` z ) e. _V |
|
| 73 | 72 | elpw | |- ( ( H ` z ) e. ~P ( J ` z ) <-> ( H ` z ) C_ ( J ` z ) ) |
| 74 | fveq2 | |- ( z = <. x , y >. -> ( H ` z ) = ( H ` <. x , y >. ) ) |
|
| 75 | df-ov | |- ( x H y ) = ( H ` <. x , y >. ) |
|
| 76 | 74 75 | eqtr4di | |- ( z = <. x , y >. -> ( H ` z ) = ( x H y ) ) |
| 77 | fveq2 | |- ( z = <. x , y >. -> ( J ` z ) = ( J ` <. x , y >. ) ) |
|
| 78 | df-ov | |- ( x J y ) = ( J ` <. x , y >. ) |
|
| 79 | 77 78 | eqtr4di | |- ( z = <. x , y >. -> ( J ` z ) = ( x J y ) ) |
| 80 | 76 79 | sseq12d | |- ( z = <. x , y >. -> ( ( H ` z ) C_ ( J ` z ) <-> ( x H y ) C_ ( x J y ) ) ) |
| 81 | 73 80 | bitrid | |- ( z = <. x , y >. -> ( ( H ` z ) e. ~P ( J ` z ) <-> ( x H y ) C_ ( x J y ) ) ) |
| 82 | 81 | ralxp | |- ( A. z e. ( S X. S ) ( H ` z ) e. ~P ( J ` z ) <-> A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) |
| 83 | 71 82 | bitrdi | |- ( s = S -> ( A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) <-> A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) |
| 84 | 70 83 | anbi12d | |- ( s = S -> ( ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| 85 | 84 | ceqsexgv | |- ( S e. _V -> ( E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| 86 | 85 | a1i | |- ( ph -> ( S e. _V -> ( E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) ) |
| 87 | 63 67 86 | pm5.21ndd | |- ( ph -> ( E. s ( s = S /\ ( s e. ~P T /\ A. z e. ( s X. s ) ( H ` z ) e. ~P ( J ` z ) ) ) <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |
| 88 | 27 59 87 | 3bitrd | |- ( ph -> ( H C_cat J <-> ( S C_ T /\ A. x e. S A. y e. S ( x H y ) C_ ( x J y ) ) ) ) |