This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isofr . (Contributed by NM, 29-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isofrlem.1 | ⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| isofrlem.2 | ⊢ ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) | ||
| Assertion | isofrlem | ⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofrlem.1 | ⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | isofrlem.2 | ⊢ ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) | |
| 3 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 4 | 1 3 | syl | ⊢ ( 𝜑 → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 5 | f1ofn | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) | |
| 6 | n0 | ⊢ ( 𝑥 ≠ ∅ ↔ ∃ 𝑦 𝑦 ∈ 𝑥 ) | |
| 7 | fnfvima | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 ‘ 𝑦 ) ∈ ( 𝐻 “ 𝑥 ) ) | |
| 8 | 7 | ne0d | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝐻 “ 𝑥 ) ≠ ∅ ) |
| 9 | 8 | 3expia | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝑥 → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 10 | 9 | exlimdv | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑦 𝑦 ∈ 𝑥 → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 11 | 6 10 | biimtrid | ⊢ ( ( 𝐻 Fn 𝐴 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑥 ≠ ∅ → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 12 | 11 | expimpd | ⊢ ( 𝐻 Fn 𝐴 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 13 | 5 12 | syl | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) |
| 14 | f1ofo | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –onto→ 𝐵 ) | |
| 15 | imassrn | ⊢ ( 𝐻 “ 𝑥 ) ⊆ ran 𝐻 | |
| 16 | forn | ⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ran 𝐻 = 𝐵 ) | |
| 17 | 15 16 | sseqtrid | ⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) |
| 18 | 14 17 | syl | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) |
| 19 | 13 18 | jctild | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) ) |
| 20 | 4 19 | syl | ⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) ) |
| 21 | dffr3 | ⊢ ( 𝑆 Fr 𝐵 ↔ ∀ 𝑧 ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) | |
| 22 | sseq1 | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( 𝑧 ⊆ 𝐵 ↔ ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ) ) | |
| 23 | neeq1 | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( 𝑧 ≠ ∅ ↔ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) | |
| 24 | 22 23 | anbi12d | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) ↔ ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) ) ) |
| 25 | ineq1 | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) ) | |
| 26 | 25 | eqeq1d | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 27 | 26 | rexeqbi1dv | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ↔ ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 28 | 24 27 | imbi12d | ⊢ ( 𝑧 = ( 𝐻 “ 𝑥 ) → ( ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ↔ ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 29 | 28 | spcgv | ⊢ ( ( 𝐻 “ 𝑥 ) ∈ V → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 30 | 2 29 | syl | ⊢ ( 𝜑 → ( ∀ 𝑧 ( ( 𝑧 ⊆ 𝐵 ∧ 𝑧 ≠ ∅ ) → ∃ 𝑤 ∈ 𝑧 ( 𝑧 ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 31 | 21 30 | biimtrid | ⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( ( 𝐻 “ 𝑥 ) ⊆ 𝐵 ∧ ( 𝐻 “ 𝑥 ) ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 32 | 20 31 | syl5d | ⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) ) |
| 33 | 4 | adantr | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) |
| 34 | f1ofun | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐻 ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → Fun 𝐻 ) |
| 36 | simpl | ⊢ ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → 𝑤 ∈ ( 𝐻 “ 𝑥 ) ) | |
| 37 | fvelima | ⊢ ( ( Fun 𝐻 ∧ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐻 ‘ 𝑦 ) = 𝑤 ) | |
| 38 | 35 36 37 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝐻 ‘ 𝑦 ) = 𝑤 ) |
| 39 | simpr | ⊢ ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) | |
| 40 | ssel | ⊢ ( 𝑥 ⊆ 𝐴 → ( 𝑦 ∈ 𝑥 → 𝑦 ∈ 𝐴 ) ) | |
| 41 | 40 | imdistani | ⊢ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) → ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) |
| 42 | isomin | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝐴 ) ) → ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ∅ ) ) | |
| 43 | 1 41 42 | syl2an | ⊢ ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) → ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ∅ ) ) |
| 44 | sneq | ⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → { ( 𝐻 ‘ 𝑦 ) } = { 𝑤 } ) | |
| 45 | 44 | imaeq2d | ⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) = ( ◡ 𝑆 “ { 𝑤 } ) ) |
| 46 | 45 | ineq2d | ⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) ) |
| 47 | 46 | eqeq1d | ⊢ ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑦 ) } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 48 | 43 47 | sylan9bb | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝐻 ‘ 𝑦 ) = 𝑤 ) → ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) |
| 49 | 39 48 | imbitrrid | ⊢ ( ( ( 𝜑 ∧ ( 𝑥 ⊆ 𝐴 ∧ 𝑦 ∈ 𝑥 ) ) ∧ ( 𝐻 ‘ 𝑦 ) = 𝑤 ) → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 50 | 49 | exp42 | ⊢ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) ) |
| 51 | 50 | imp | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) |
| 52 | 51 | com3l | ⊢ ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) |
| 53 | 52 | com4t | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) ) |
| 54 | 53 | imp | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( 𝑦 ∈ 𝑥 → ( ( 𝐻 ‘ 𝑦 ) = 𝑤 → ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 55 | 54 | reximdvai | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ( ∃ 𝑦 ∈ 𝑥 ( 𝐻 ‘ 𝑦 ) = 𝑤 → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 56 | 38 55 | mpd | ⊢ ( ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) ∧ ( 𝑤 ∈ ( 𝐻 “ 𝑥 ) ∧ ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) |
| 57 | 56 | rexlimdvaa | ⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝐴 ) → ( ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| 58 | 57 | ex | ⊢ ( 𝜑 → ( 𝑥 ⊆ 𝐴 → ( ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 59 | 58 | adantrd | ⊢ ( 𝜑 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ( ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 60 | 59 | a2d | ⊢ ( 𝜑 → ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑤 ∈ ( 𝐻 “ 𝑥 ) ( ( 𝐻 “ 𝑥 ) ∩ ( ◡ 𝑆 “ { 𝑤 } ) ) = ∅ ) → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 61 | 32 60 | syld | ⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 62 | 61 | alrimdv | ⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) ) |
| 63 | dffr3 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) | |
| 64 | 62 63 | imbitrrdi | ⊢ ( 𝜑 → ( 𝑆 Fr 𝐵 → 𝑅 Fr 𝐴 ) ) |