This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isose . (Contributed by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isofrlem.1 | ⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| isofrlem.2 | ⊢ ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) | ||
| Assertion | isoselem | ⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofrlem.1 | ⊢ ( 𝜑 → 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ) | |
| 2 | isofrlem.2 | ⊢ ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) | |
| 3 | dfse2 | ⊢ ( 𝑅 Se 𝐴 ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) | |
| 4 | 3 | biimpi | ⊢ ( 𝑅 Se 𝐴 → ∀ 𝑧 ∈ 𝐴 ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) |
| 5 | 4 | r19.21bi | ⊢ ( ( 𝑅 Se 𝐴 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) |
| 6 | 5 | expcom | ⊢ ( 𝑧 ∈ 𝐴 → ( 𝑅 Se 𝐴 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) ) |
| 7 | 6 | adantl | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑅 Se 𝐴 → ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V ) ) |
| 8 | imaeq2 | ⊢ ( 𝑥 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) → ( 𝐻 “ 𝑥 ) = ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ) | |
| 9 | 8 | eleq1d | ⊢ ( 𝑥 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) → ( ( 𝐻 “ 𝑥 ) ∈ V ↔ ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
| 10 | 9 | imbi2d | ⊢ ( 𝑥 = ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) → ( ( 𝜑 → ( 𝐻 “ 𝑥 ) ∈ V ) ↔ ( 𝜑 → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) ) |
| 11 | 10 2 | vtoclg | ⊢ ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝜑 → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
| 12 | 11 | com12 | ⊢ ( 𝜑 → ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
| 13 | 12 | adantr | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ) ) |
| 14 | isoini | ⊢ ( ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ) | |
| 15 | 1 14 | sylan | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ) |
| 16 | 15 | eleq1d | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐻 “ ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ) ∈ V ↔ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 17 | 13 16 | sylibd | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝐴 ∩ ( ◡ 𝑅 “ { 𝑧 } ) ) ∈ V → ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 18 | 7 17 | syld | ⊢ ( ( 𝜑 ∧ 𝑧 ∈ 𝐴 ) → ( 𝑅 Se 𝐴 → ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 19 | 18 | ralrimdva | ⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 20 | isof1o | ⊢ ( 𝐻 Isom 𝑅 , 𝑆 ( 𝐴 , 𝐵 ) → 𝐻 : 𝐴 –1-1-onto→ 𝐵 ) | |
| 21 | f1ofn | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 Fn 𝐴 ) | |
| 22 | sneq | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → { 𝑦 } = { ( 𝐻 ‘ 𝑧 ) } ) | |
| 23 | 22 | imaeq2d | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → ( ◡ 𝑆 “ { 𝑦 } ) = ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) |
| 24 | 23 | ineq2d | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) = ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ) |
| 25 | 24 | eleq1d | ⊢ ( 𝑦 = ( 𝐻 ‘ 𝑧 ) → ( ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 26 | 25 | ralrn | ⊢ ( 𝐻 Fn 𝐴 → ( ∀ 𝑦 ∈ ran 𝐻 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 27 | 1 20 21 26 | 4syl | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐻 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ) ) |
| 28 | f1ofo | ⊢ ( 𝐻 : 𝐴 –1-1-onto→ 𝐵 → 𝐻 : 𝐴 –onto→ 𝐵 ) | |
| 29 | forn | ⊢ ( 𝐻 : 𝐴 –onto→ 𝐵 → ran 𝐻 = 𝐵 ) | |
| 30 | 1 20 28 29 | 4syl | ⊢ ( 𝜑 → ran 𝐻 = 𝐵 ) |
| 31 | 30 | raleqdv | ⊢ ( 𝜑 → ( ∀ 𝑦 ∈ ran 𝐻 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) ) |
| 32 | 27 31 | bitr3d | ⊢ ( 𝜑 → ( ∀ 𝑧 ∈ 𝐴 ( 𝐵 ∩ ( ◡ 𝑆 “ { ( 𝐻 ‘ 𝑧 ) } ) ) ∈ V ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) ) |
| 33 | 19 32 | sylibd | ⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) ) |
| 34 | dfse2 | ⊢ ( 𝑆 Se 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ( 𝐵 ∩ ( ◡ 𝑆 “ { 𝑦 } ) ) ∈ V ) | |
| 35 | 33 34 | imbitrrdi | ⊢ ( 𝜑 → ( 𝑅 Se 𝐴 → 𝑆 Se 𝐵 ) ) |