This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for isofr . (Contributed by NM, 29-Apr-2004) (Revised by Mario Carneiro, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isofrlem.1 | |- ( ph -> H Isom R , S ( A , B ) ) |
|
| isofrlem.2 | |- ( ph -> ( H " x ) e. _V ) |
||
| Assertion | isofrlem | |- ( ph -> ( S Fr B -> R Fr A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isofrlem.1 | |- ( ph -> H Isom R , S ( A , B ) ) |
|
| 2 | isofrlem.2 | |- ( ph -> ( H " x ) e. _V ) |
|
| 3 | isof1o | |- ( H Isom R , S ( A , B ) -> H : A -1-1-onto-> B ) |
|
| 4 | 1 3 | syl | |- ( ph -> H : A -1-1-onto-> B ) |
| 5 | f1ofn | |- ( H : A -1-1-onto-> B -> H Fn A ) |
|
| 6 | n0 | |- ( x =/= (/) <-> E. y y e. x ) |
|
| 7 | fnfvima | |- ( ( H Fn A /\ x C_ A /\ y e. x ) -> ( H ` y ) e. ( H " x ) ) |
|
| 8 | 7 | ne0d | |- ( ( H Fn A /\ x C_ A /\ y e. x ) -> ( H " x ) =/= (/) ) |
| 9 | 8 | 3expia | |- ( ( H Fn A /\ x C_ A ) -> ( y e. x -> ( H " x ) =/= (/) ) ) |
| 10 | 9 | exlimdv | |- ( ( H Fn A /\ x C_ A ) -> ( E. y y e. x -> ( H " x ) =/= (/) ) ) |
| 11 | 6 10 | biimtrid | |- ( ( H Fn A /\ x C_ A ) -> ( x =/= (/) -> ( H " x ) =/= (/) ) ) |
| 12 | 11 | expimpd | |- ( H Fn A -> ( ( x C_ A /\ x =/= (/) ) -> ( H " x ) =/= (/) ) ) |
| 13 | 5 12 | syl | |- ( H : A -1-1-onto-> B -> ( ( x C_ A /\ x =/= (/) ) -> ( H " x ) =/= (/) ) ) |
| 14 | f1ofo | |- ( H : A -1-1-onto-> B -> H : A -onto-> B ) |
|
| 15 | imassrn | |- ( H " x ) C_ ran H |
|
| 16 | forn | |- ( H : A -onto-> B -> ran H = B ) |
|
| 17 | 15 16 | sseqtrid | |- ( H : A -onto-> B -> ( H " x ) C_ B ) |
| 18 | 14 17 | syl | |- ( H : A -1-1-onto-> B -> ( H " x ) C_ B ) |
| 19 | 13 18 | jctild | |- ( H : A -1-1-onto-> B -> ( ( x C_ A /\ x =/= (/) ) -> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) ) |
| 20 | 4 19 | syl | |- ( ph -> ( ( x C_ A /\ x =/= (/) ) -> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) ) |
| 21 | dffr3 | |- ( S Fr B <-> A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) ) |
|
| 22 | sseq1 | |- ( z = ( H " x ) -> ( z C_ B <-> ( H " x ) C_ B ) ) |
|
| 23 | neeq1 | |- ( z = ( H " x ) -> ( z =/= (/) <-> ( H " x ) =/= (/) ) ) |
|
| 24 | 22 23 | anbi12d | |- ( z = ( H " x ) -> ( ( z C_ B /\ z =/= (/) ) <-> ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) ) ) |
| 25 | ineq1 | |- ( z = ( H " x ) -> ( z i^i ( `' S " { w } ) ) = ( ( H " x ) i^i ( `' S " { w } ) ) ) |
|
| 26 | 25 | eqeq1d | |- ( z = ( H " x ) -> ( ( z i^i ( `' S " { w } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
| 27 | 26 | rexeqbi1dv | |- ( z = ( H " x ) -> ( E. w e. z ( z i^i ( `' S " { w } ) ) = (/) <-> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
| 28 | 24 27 | imbi12d | |- ( z = ( H " x ) -> ( ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) <-> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
| 29 | 28 | spcgv | |- ( ( H " x ) e. _V -> ( A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
| 30 | 2 29 | syl | |- ( ph -> ( A. z ( ( z C_ B /\ z =/= (/) ) -> E. w e. z ( z i^i ( `' S " { w } ) ) = (/) ) -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
| 31 | 21 30 | biimtrid | |- ( ph -> ( S Fr B -> ( ( ( H " x ) C_ B /\ ( H " x ) =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
| 32 | 20 31 | syl5d | |- ( ph -> ( S Fr B -> ( ( x C_ A /\ x =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) ) |
| 33 | 4 | adantr | |- ( ( ph /\ x C_ A ) -> H : A -1-1-onto-> B ) |
| 34 | f1ofun | |- ( H : A -1-1-onto-> B -> Fun H ) |
|
| 35 | 33 34 | syl | |- ( ( ph /\ x C_ A ) -> Fun H ) |
| 36 | simpl | |- ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> w e. ( H " x ) ) |
|
| 37 | fvelima | |- ( ( Fun H /\ w e. ( H " x ) ) -> E. y e. x ( H ` y ) = w ) |
|
| 38 | 35 36 37 | syl2an | |- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> E. y e. x ( H ` y ) = w ) |
| 39 | simpr | |- ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) |
|
| 40 | ssel | |- ( x C_ A -> ( y e. x -> y e. A ) ) |
|
| 41 | 40 | imdistani | |- ( ( x C_ A /\ y e. x ) -> ( x C_ A /\ y e. A ) ) |
| 42 | isomin | |- ( ( H Isom R , S ( A , B ) /\ ( x C_ A /\ y e. A ) ) -> ( ( x i^i ( `' R " { y } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) ) ) |
|
| 43 | 1 41 42 | syl2an | |- ( ( ph /\ ( x C_ A /\ y e. x ) ) -> ( ( x i^i ( `' R " { y } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) ) ) |
| 44 | sneq | |- ( ( H ` y ) = w -> { ( H ` y ) } = { w } ) |
|
| 45 | 44 | imaeq2d | |- ( ( H ` y ) = w -> ( `' S " { ( H ` y ) } ) = ( `' S " { w } ) ) |
| 46 | 45 | ineq2d | |- ( ( H ` y ) = w -> ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = ( ( H " x ) i^i ( `' S " { w } ) ) ) |
| 47 | 46 | eqeq1d | |- ( ( H ` y ) = w -> ( ( ( H " x ) i^i ( `' S " { ( H ` y ) } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
| 48 | 43 47 | sylan9bb | |- ( ( ( ph /\ ( x C_ A /\ y e. x ) ) /\ ( H ` y ) = w ) -> ( ( x i^i ( `' R " { y } ) ) = (/) <-> ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) |
| 49 | 39 48 | imbitrrid | |- ( ( ( ph /\ ( x C_ A /\ y e. x ) ) /\ ( H ` y ) = w ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 50 | 49 | exp42 | |- ( ph -> ( x C_ A -> ( y e. x -> ( ( H ` y ) = w -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) ) |
| 51 | 50 | imp | |- ( ( ph /\ x C_ A ) -> ( y e. x -> ( ( H ` y ) = w -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) |
| 52 | 51 | com3l | |- ( y e. x -> ( ( H ` y ) = w -> ( ( ph /\ x C_ A ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) |
| 53 | 52 | com4t | |- ( ( ph /\ x C_ A ) -> ( ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( y e. x -> ( ( H ` y ) = w -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) ) |
| 54 | 53 | imp | |- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> ( y e. x -> ( ( H ` y ) = w -> ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
| 55 | 54 | reximdvai | |- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> ( E. y e. x ( H ` y ) = w -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 56 | 38 55 | mpd | |- ( ( ( ph /\ x C_ A ) /\ ( w e. ( H " x ) /\ ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) |
| 57 | 56 | rexlimdvaa | |- ( ( ph /\ x C_ A ) -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
| 58 | 57 | ex | |- ( ph -> ( x C_ A -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
| 59 | 58 | adantrd | |- ( ph -> ( ( x C_ A /\ x =/= (/) ) -> ( E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
| 60 | 59 | a2d | |- ( ph -> ( ( ( x C_ A /\ x =/= (/) ) -> E. w e. ( H " x ) ( ( H " x ) i^i ( `' S " { w } ) ) = (/) ) -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
| 61 | 32 60 | syld | |- ( ph -> ( S Fr B -> ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
| 62 | 61 | alrimdv | |- ( ph -> ( S Fr B -> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) ) |
| 63 | dffr3 | |- ( R Fr A <-> A. x ( ( x C_ A /\ x =/= (/) ) -> E. y e. x ( x i^i ( `' R " { y } ) ) = (/) ) ) |
|
| 64 | 62 63 | imbitrrdi | |- ( ph -> ( S Fr B -> R Fr A ) ) |