This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of well-founded relation. Definition 6.21 of TakeutiZaring p. 30. (Contributed by NM, 23-Apr-2004) (Revised by Mario Carneiro, 23-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dffr3 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dffr2 | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) | |
| 2 | iniseg | ⊢ ( 𝑦 ∈ V → ( ◡ 𝑅 “ { 𝑦 } ) = { 𝑧 ∣ 𝑧 𝑅 𝑦 } ) | |
| 3 | 2 | elv | ⊢ ( ◡ 𝑅 “ { 𝑦 } ) = { 𝑧 ∣ 𝑧 𝑅 𝑦 } |
| 4 | 3 | ineq2i | ⊢ ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ( 𝑥 ∩ { 𝑧 ∣ 𝑧 𝑅 𝑦 } ) |
| 5 | dfrab3 | ⊢ { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ( 𝑥 ∩ { 𝑧 ∣ 𝑧 𝑅 𝑦 } ) | |
| 6 | 4 5 | eqtr4i | ⊢ ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } |
| 7 | 6 | eqeq1i | ⊢ ( ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) |
| 8 | 7 | rexbii | ⊢ ( ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ↔ ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) |
| 9 | 8 | imbi2i | ⊢ ( ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ↔ ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
| 10 | 9 | albii | ⊢ ( ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 { 𝑧 ∈ 𝑥 ∣ 𝑧 𝑅 𝑦 } = ∅ ) ) |
| 11 | 1 10 | bitr4i | ⊢ ( 𝑅 Fr 𝐴 ↔ ∀ 𝑥 ( ( 𝑥 ⊆ 𝐴 ∧ 𝑥 ≠ ∅ ) → ∃ 𝑦 ∈ 𝑥 ( 𝑥 ∩ ( ◡ 𝑅 “ { 𝑦 } ) ) = ∅ ) ) |